scholarly journals Motor proficiency composite scores as a novel biomarker for Alzheimer's disease

2021 ◽  
Vol 17 (S5) ◽  
Author(s):  
Vincent Koppelmans ◽  
Marit F.L. Ruitenberg ◽  
Jos Van der Geest ◽  
Kevin M. Duff
2020 ◽  
Vol 12 (1) ◽  
Author(s):  
Catherine M. Calvin ◽  
◽  
Casper de Boer ◽  
Vanessa Raymont ◽  
John Gallacher ◽  
...  

Abstract Background The Amyloid/Tau/Neurodegeneration (ATN) framework has been proposed as a means of evidencing the biological state of Alzheimer’s disease (AD). Predicting ATN status in pre-dementia individuals therefore provides an important opportunity for targeted recruitment into AD interventional studies. We investigated the extent to which ATN-defined biomarker status can be predicted by known AD risk factors as well as vascular-related composite risk scores. Methods One thousand ten cognitively healthy older adults were allocated to one of five ATN-defined biomarker categories. Multinomial logistic regression tested risk factors including age, sex, education, APOE4, family history of dementia, cognitive function, vascular risk indices (high systolic blood pressure, body mass index (BMI), high cholesterol, physical inactivity, ever smoked, blood pressure medication, diabetes, prior cardiovascular disease, atrial fibrillation and white matter lesion (WML) volume), and three vascular-related composite scores, to predict five ATN subgroups; ROC curve models estimated their added value in predicting pathology. Results Age, APOE4, family history, BMI, MMSE and white matter lesions (WML) volume differed between ATN biomarker groups. Prediction of Alzheimer’s disease pathology (versus normal AD biomarkers) improved by 7% after adding family history, BMI, MMSE and WML to a ROC curve that included age, sex and APOE4. Risk composite scores did not add value. Conclusions ATN-defined Alzheimer’s disease biomarker status prediction among cognitively healthy individuals is possible through a combination of constitutional and cardiovascular risk factors but established dementia composite risk scores do not appear to add value in this context.


2011 ◽  
Vol 7 ◽  
pp. S245-S246
Author(s):  
Laura Gibbons ◽  
Adam Carle ◽  
Philip Insel ◽  
Scott Mackin ◽  
Shubhabrata Mukherjee ◽  
...  

2019 ◽  
Vol 15 ◽  
pp. P631-P632
Author(s):  
Danai Chasioti ◽  
Jingwen Yan ◽  
Kwangsik Nho ◽  
Andrew J. Saykin

2020 ◽  
Vol 47 (13) ◽  
pp. 3165-3175 ◽  
Author(s):  
Denise Visser ◽  
Emma E. Wolters ◽  
Sander C. J. Verfaillie ◽  
Emma M. Coomans ◽  
Tessa Timmers ◽  
...  

Abstract Purpose We aimed to investigate associations between tau pathology and relative cerebral blood flow (rCBF), and their relationship with cognition in Alzheimer’s disease (AD), by using a single dynamic [18F]flortaucipir positron emission tomography (PET) scan. Methods Seventy-one subjects with AD (66 ± 8 years, mini-mental state examination (MMSE) 23 ± 4) underwent a dynamic 130-min [18F]flortaucipir PET scan. Cognitive assessment consisted of composite scores of four cognitive domains. For tau pathology and rCBF, receptor parametric mapping (cerebellar gray matter reference region) was used to create uncorrected and partial volume-corrected parametric images of non-displaceable binding potential (BPND) and R1, respectively. (Voxel-wise) linear regressions were used to investigate associations between BPND and/or R1 and cognition. Results Higher [18F]flortaucipir BPND was associated with lower R1 in the lateral temporal, parietal and occipital regions. Higher medial temporal BPND was associated with worse memory, and higher lateral temporal BPND with worse executive functioning and language. Higher parietal BPND was associated with worse executive functioning, language and attention, and higher occipital BPND with lower cognitive scores across all domains. Higher frontal BPND was associated with worse executive function and attention. For [18F]flortaucipir R1, lower values in the lateral temporal and parietal ROIs were associated with worse executive functioning, language and attention, and lower occipital R1 with lower language and attention scores. When [18F]flortaucipir BPND and R1 were modelled simultaneously, associations between lower R1 in the lateral temporal ROI  and worse attention remained, as well as for lower parietal R1 and worse executive functioning and attention. Conclusion Tau pathology was associated with locally reduced rCBF. Tau pathology and low rCBF were both independently associated with worse cognitive performance. For tau pathology, these associations spanned widespread neocortex, while for rCBF, independent associations were restricted to lateral temporal and parietal regions and the executive functioning and attention domains. These findings indicate that each biomarker may independently contribute to cognitive impairment in AD.


2019 ◽  
Vol 42 ◽  
Author(s):  
Colleen M. Kelley ◽  
Larry L. Jacoby

Abstract Cognitive control constrains retrieval processing and so restricts what comes to mind as input to the attribution system. We review evidence that older adults, patients with Alzheimer's disease, and people with traumatic brain injury exert less cognitive control during retrieval, and so are susceptible to memory misattributions in the form of dramatic levels of false remembering.


Author(s):  
J. Metuzals ◽  
D. F. Clapin ◽  
V. Montpetit

Information on the conformation of paired helical filaments (PHF) and the neurofilamentous (NF) network is essential for an understanding of the mechanisms involved in the formation of the primary lesions of Alzheimer's disease (AD): tangles and plaques. The structural and chemical relationships between the NF and the PHF have to be clarified in order to discover the etiological factors of this disease. We are investigating by stereo electron microscopic and biochemical techniques frontal lobe biopsies from patients with AD and squid giant axon preparations. The helical nature of the lesion in AD is related to pathological alterations of basic properties of the nervous system due to the helical symmetry that exists at all hierarchic structural levels in the normal brain. Because of this helical symmetry of NF protein assemblies and PHF, the employment of structure reconstruction techniques to determine the conformation, particularly the handedness of these structures, is most promising. Figs. 1-3 are frontal lobe biopsies.


Sign in / Sign up

Export Citation Format

Share Document