Chemical Strategies for Making Strong Graphene Materials

Author(s):  
Tianzhu Zhou ◽  
Qunfeng Cheng
Keyword(s):  
2020 ◽  
Vol 26 ◽  
Author(s):  
Madison Tonkin ◽  
Shama Khan ◽  
Mohmmad Younus Wani ◽  
Aijaz Ahmad

: Quorum sensing is defined as cell to cell communication between microorganisms, which enables microorganisms to behave as multicellular organisms. Quorum sensing enables many collaborative benefits such as synchronisation of virulence factors and biofilm formation. Both quorum sensing as well as biofilm formation encourage the development of drug resistance in microorganisms. Biofilm formation and quorum sensing are causally linked to each other and play role in the pathogenesis of microorganisms. With the increasing drug resistance against the available antibiotics and antifungal medications, scientists are combining different options to develop new strategies. Such strategies rely on the inhibition of the communication and virulence factors rather than on killing or inhibiting the growth of the microorganisms. This review encompasses the communication technique used by microorganisms, how microorganism resistance is linked to quorum sensing and various chemical strategies to combat quorum sensing and thereby drug resistance. Several compounds have been identified as quorum sensing inhibitors and are known to be effective in reducing resistance as they do not kill the pathogens but rather disrupt their communication. Natural compounds have been identified as anti-quorum sensing agents. However, natural compounds present several related disadvantages. Therefore, the need for the development of synthetic or semi-synthetic compounds has arisen. This review argues that anti-quorum sensing compounds are effective in disrupting quorum sensing and could therefore be effective in reducing microorganism drug resistance.


2020 ◽  
Vol 17 (5) ◽  
pp. 393-402
Author(s):  
Figueroa-Valverde Lauro ◽  
Rosas-Nexticapa Marcela ◽  
Lopez-Ramos Maria ◽  
Diaz Cedillo Francisco ◽  
Mateu-Armand Virginia ◽  
...  

There are several protocols for the preparation of bicyclic derivatives; however, some methods use dangerous and require special conditions. The aim of this study was to synthesize a new Dioxaspiro[ bicyclo[3.3.1]nonane-oxabicyclo[6.2.0]-deca-1(10), 8-dien-4-one (compound 8). Compound 8 was prepared using some reactions such as; i) etherification, ii) reduction, iii) amidation, iv) imination and v) 2+2 addition. The chemical structure of 8 and its intermediaries were completely characterized by spectroscopic techniques and elemental analysis. The synthesis showed a yield of 85% for compound 8. In this study, an easy method for the preparation of compound 8 is reported.


2021 ◽  
Vol 7 (3) ◽  
Author(s):  
M. Lavanya

AbstractCorrosion results from the electrochemical reactions between the metal and its existing environment. Corrosion results in severe and expensive damage to a wide spectrum of industries. When microbes are involved in corrosion it is seldom possible to economically evaluate its impact. Microbially influenced corrosion is recognized to cause catastrophic failures contributing to approximately 20% of the annual losses. In many engineering applications, microbially influenced corrosion control is of prime importance. Expensive, toxicity and sometimes, even ineffectiveness of the current chemical strategies to mitigate microbially influenced corrosion have shifted the interest towards eco-friendly inhibitors. The present review discusses microbial induced corrosion in various metals and its inhibition through eco-friendly inhibitors. In addition, the study also reviews the morphological and electrochemical impedance results.


2012 ◽  
Vol 84 (3) ◽  
pp. 411-423 ◽  
Author(s):  
Pietro Tundo

Since the Industrial Revolution, chlorine has featured as an iconic molecule in process chemistry even though its production by electrolysis of sodium chloride is very energy-intensive. Owing to its high energy and reactivity, chlorine allows the manufacture of chlorinated derivatives in a very easy way: AlCl3, SnCl4, TiCl4, SiCl4, ZnCl2, PCl3, PCl5, POCl3, COCl2, etc. in turn are pillar intermediates in the production of numerous everyday goods. This kind of chloride chemistry is widely used because the energy is transferred to these intermediates, making further syntheses easy. The environmental and health constraints (toxicity and eco-toxicity, ozone layer depletion) and the growing need for energy (energy efficiency, climate change) force us to take advantage from available knowledge to develop new chemical strategies. Substitution of chlorine in end products in compounds where “chlorine is used in the making” means that we avoid electrolysis as primary energetic source; this makes chemistry “without chlorine” considerably more difficult and illustrates why it has not found favor in the past. The rationale behind this Special Topic issue is to seek useful and industrially relevant examples for alternatives to chlorine in synthesis, so as to facilitate the development of industrially relevant and implementable breakthrough technologies.


Author(s):  
Figueroa-Valverde Lauro ◽  
López-Ramos Maria ◽  
Díaz-Cedillo Francisco ◽  
Rosas-Nexticapa Marcela ◽  
Mateu-Armad Maria Virginia ◽  
...  

Background: Several drugs with inotropic activity have been synthesized; however, there is very little information on biological activity exerted by steroid derivatives in the cardiovascular system. Objective: The aim of this research was to prepare a steroid-pyridine derivative to evaluate the effect it exerts on left ventricular pressure and characterize its molecular interaction. Methods: The first stage was carried out through the synthesis of a steroid-pyridine derivative using some chemical strategies. The second stage involved the evaluation of the biological activity of the steroid-pyridine derivative on left ventricular pressure using a model of heart failure in the absence or presence of the drugs, such as flutamide, tamoxifen, prazosin, metoprolol, indomethacin, and nifedipine. Results: The results showed that steroid-pyridine derivative increased left ventricular pressure in a dose-dependent manner (0.001-100 nM); however, this phenomenon was significantly inhibited only by nifedipine at a dose of 1 nM. These results indicate that positive inotropic activity produced by the steroid-pyridine derivative was via calcium channel activation. Furthermore, the biological activity exerted by the steroid-pyridine derivative on the left ventricle produces changes in cAMP concentration. Conclusion: It is noteworthy that positive inotropic activity produced by this steroid-pyridine derivative involves a different molecular mechanism compared to other positive inotropic drugs. Therefore, this steroid could be a good candidate for the treatment of heart failure.


Sign in / Sign up

Export Citation Format

Share Document