scholarly journals A Brief Insight into Microbial Corrosion and its Mitigation with Eco-friendly Inhibitors

2021 ◽  
Vol 7 (3) ◽  
Author(s):  
M. Lavanya

AbstractCorrosion results from the electrochemical reactions between the metal and its existing environment. Corrosion results in severe and expensive damage to a wide spectrum of industries. When microbes are involved in corrosion it is seldom possible to economically evaluate its impact. Microbially influenced corrosion is recognized to cause catastrophic failures contributing to approximately 20% of the annual losses. In many engineering applications, microbially influenced corrosion control is of prime importance. Expensive, toxicity and sometimes, even ineffectiveness of the current chemical strategies to mitigate microbially influenced corrosion have shifted the interest towards eco-friendly inhibitors. The present review discusses microbial induced corrosion in various metals and its inhibition through eco-friendly inhibitors. In addition, the study also reviews the morphological and electrochemical impedance results.

2020 ◽  
Vol 16 (4) ◽  
pp. 454-486 ◽  
Author(s):  
Smita Verma ◽  
Vishnuvardh Ravichandiran ◽  
Nihar Ranjan ◽  
Swaran J.S. Flora

Nitrogen-containing heterocycles are one of the most common structural motifs in approximately 80% of the marketed drugs. Of these, benzimidazoles analogues are known to elicit a wide spectrum of pharmaceutical activities such as anticancer, antibacterial, antiparasitic, antiviral, antifungal as well as chemosensor effect. Based on the benzimidazole core fused heterocyclic compounds, crescent-shaped bisbenzimidazoles were developed which provided an early breakthrough in the sequence-specific DNA recognition. Over the years, a number of functional variations in the bisbenzimidazole core have led to the emergence of their unique properties and established them as versatile ligands against several classes of pathogens. The present review provides an overview of diverse pharmacological activities of the bisbenzimidazole analogues in the past decade with a brief account of its development through the years.


2001 ◽  
Vol 699 ◽  
Author(s):  
S. R. Taylor ◽  
A.M. Mierisch

AbstractLocal electrochemical impedance mapping and spectroscopy (LEIM/S) have become important tools for the investigation of local electrochemical breakdown events associated with the degradation of organically coated metals in aqueous environments. LEIM/S of organic coated metal substrates has revealed local degradation events that are distributed spatially and temporally. These observations provide support to a number of long-standing theories, as well as provide new insight into the damage process. The local changes in impedance observed at early stages of immersion support the presence of virtual pores, while the metastability of impedance peaks representing the local changes provide evidence of healing via corrosion product formation. Each of these are long-standing theories used to explain global electrochemical impedance measurements. This paper will provide an overview of some of the events observed using LEIM and examine these results in the context of recent analytical and numerical models. Models used to predict the electric field above an equipotential disk electrode support the interpretation of most experimental LEI data as being representative of chemical and physical phenomenon and not a result of measurement artifact. However, certain features may be an artifact of the finite nature of the experimental process. The interpretation of LEIM events in view of current experimental and modeling results will be discussed.


1995 ◽  
Vol 411 ◽  
Author(s):  
S. R. Taylor ◽  
M. W. Wittmann

ABSTRACTCoating failure initiates as a local event at defects which can result from chemical heterogeneities in the resin or physical defects such as bubbles, underfilm deposits, or pinholes. The ability to detect, map the location, as well as make quantitative in-situ measurements of coating heterogeneities will help identify the source of failure (i.e. coating chemistry, method of application, cure schedule, etc.) and provide insight into the mechanisms of coating degradation. This study used a 5 electrode arrangement to perform local electrochemical impedance spectroscopy (LEIS) on coated steel substrates. Using single frequency measurements, LEIS could successfully detect and map both intentional chemical heterogeneities and physical defects such as subsurface bubbles, underfilm deposits, and pinholes. Efforts to optimize probe design and instrumentation are ongoing.


Author(s):  
Zuowei Chen ◽  
Liquan Wang ◽  
Jiaping Lin ◽  
Lei Du

High-temperature phthalonitrile resins have a wide range of applications, and understanding their curing mechanism is of great importance for academic research and engineering applications. However, the actual curing mechanism is...


Materials ◽  
2018 ◽  
Vol 11 (12) ◽  
pp. 2557 ◽  
Author(s):  
Seo Lee ◽  
Jae Kang ◽  
Dokyoung Kim

Porous silicon has been utilized within a wide spectrum of industries, as well as being used in basic research for engineering and biomedical fields. Recently, surface modification methods have been constantly coming under the spotlight, mostly in regard to maximizing its purpose of use. Within this review, we will introduce porous silicon, the experimentation preparatory methods, the properties of the surface of porous silicon, and both more conventional as well as newly developed surface modification methods that have assisted in attempting to overcome the many drawbacks we see in the existing methods. The main aim of this review is to highlight and give useful insight into improving the properties of porous silicon, and create a focused description of the surface modification methods.


2017 ◽  
Vol 15 (19) ◽  
Author(s):  
Marek Volt

Artiklis käsitlen Lev Tolstoi kunstiteooria retseptsiooni anglo-ameerika esteetikas. Esiteks formuleerin Tolstoi kunstidefinitsiooni ja selle põhimõistete kanoonilise tõlgenduse. Seejärel analüüsin määratlust ekstensionaalse adekvaatsuse alusel, keskendudes nii tavapäraste kui võimalike uute etteheidete paikapidavuse uurimisele. Kolmandaks püstitan küsimuse, kas Tolstoi kunstidefinitsiooni kriitika ekstensionaalse adekvaatsuse alusel on üldse õigustatud. Väidan, et kuigi senistel Tolstoi meta-esteetilise rehabiliteerimise katsetel esineb puuduseid, paljastab Tolstoi kunstiteooria immanentne kriitika – teooria vaagimine eeldustelt, millelt see kritiseerib oponeerivaid teooriaid –, et ekstensionaalsest adekvaatsusest lähtuv kriitika on õigustatud. My article discusses Tolstoy’s theory of art in the context of Anglo-American aesthetics. Although Tolstoy’s What is Art touches upon a very wide spectrum of subjects (the place of art in the world, justification of sacrifices made for completing art works, criticism of previous theories of aesthetics, especially of the theory of beauty, defining of art as the expression of feelings, judging of art as such based on the religious knowledge of the era, action mechanisms of beauty/pleasure-centred art, consequences, conditions of the value of art, the relations between art and science, etc.), it has mainly been examined from the aspects of judging and defining of art.The article focuses on Tolstoy’s definition of art and consists of three notional parts. First, I present the canonical formulation of Tolstoy’s definition of art – something is a work of art if and only if the person, who lives through the feeling(s), causes by external signs that the recipients live through the same feelings. I also present the canonical interpretation of its main concepts – the conditions for creation, transmitting and reception.Second, I have an analytical insight into the criticism of the canonical treatment, displaying and commenting on, but also responding and complementing the presented arguments. The extensional adequacy-based analysis of Tolstoy’s definition of art shows that although it is possible to eliminate some of the typical criticisms, none of the three necessary conditions was necessary by itself, nor were all three of them sufficient when taken together.As Tolstoy’s definition of art has sometimes earned quite serious criticism, then, as my third point, I also examine some possibilities for rehabilitating Tolstoy’s theory of art: whether and in what sense can the extensional adequacy-based analysis of Tolstoy’s definition of art be justified at all? So far, the attempts of meta-aesthetic rehabilitation of Tolstoy (e.g., Mounce centrism) have not achieved the expected result. Furthermore, the immanent criticism of Tolstoy’s theory of art (criticism of the theory, based on the prerequisites it uses to criticize its opposing theories) reveals that the extensional adequacy-based criticism of Tolstoy’s definition of art is justified, but it is not necessarily the only yardstick for the theory.


2014 ◽  
Vol 5 ◽  
pp. 2328-2338 ◽  
Author(s):  
Mildred Quintana ◽  
Jesús Iván Tapia ◽  
Maurizio Prato

The development of chemical strategies to render graphene viable for incorporation into devices is a great challenge. A promising approach is the production of stable graphene dispersions from the exfoliation of graphite in water and organic solvents. The challenges involve the production of a large quantity of graphene sheets with tailored distribution in thickness, size, and shape. In this review, we present some of the recent efforts towards the controlled production of graphene in dispersions. We also describe some of the chemical protocols that have provided insight into the vast organic chemistry of the single atomic plane of graphite. Controlled chemical reactions applied to graphene are expected to significantly improve the design of hierarchical, functional platforms, driving the inclusion of graphene into advanced functional materials forward.


Chemosensors ◽  
2021 ◽  
Vol 9 (10) ◽  
pp. 274
Author(s):  
Fidel Toldra-Reig ◽  
Jose Manuel Serra

This work presents a solid-state ionic-based device to selectively detect C2H4 in car exhaust gases. The sensor consists of 8YSZ as the electrolyte and two electrodes: Fe0.7Cr1.3O3/8YSZ and LSM/8YSZ. The main aim of this work is to optimize the catalytic behavior of the working electrode to C2H4 and reduce cross-sensitivity toward CO and H2O. Several catalyst nanoparticles were infiltrated to tailor C2H4 adsorption and electrochemical oxidation properties while diminishing adsorption and conversion of other gas components such as CO. The infiltrated metal catalysts were selected, taking into account both adsorption and redox properties. Infiltration of Ti or Al, followed by a second infiltration of Ni, enabled the selective detection of C2H4 with low cross-sensitivity toward CO and H2O in a moist gas environment. Further insight into potentiometric C2H4 sensing is achieved by electrochemical impedance analysis of the electrodes activated with bifunctional catalysts.


2018 ◽  
Vol 65 (1) ◽  
pp. 46-52
Author(s):  
Fengling Xu ◽  
Zhenghui Qiu ◽  
Ri Qiu ◽  
Jiadong Yang ◽  
Cunguo Lin

Purpose For mitigating biocorrosion induced by sulfate-reducing bacteria (SRB) in seawater, the zwitterionic molecule layer (ZML) of poly (sulfobetaine methacrylate) is grafted onto B10 surface by chemical vapor deposition and surface-initiated atom transfer radical polymerization. Design/methodology/approach Energy-dispersive spectroscopy-attenuated total reflectance Fourier transform infrared spectroscopy and static contact angle measurements are used to characterize the as-formed layer. Findings After surface modification, B10 can significantly reduce SRB adhesion, demonstrating the good antifouling property. Further, the biocorrosion inhibition is investigated by potentiodynamic polarization and electrochemical impedance spectroscopy, indicating that ZML exhibits high resistance to biocorrosion with inhibition efficiency of approximately 90 per cent. Originality/value ZML performs a dual feature, i.e. antifouling film and corrosion inhibitor, for the biocorrosion inhibition.


2014 ◽  
Vol 42 (5) ◽  
pp. 1378-1382 ◽  
Author(s):  
Tania Maffucci ◽  
Marco Falasca

In the last few years, an increased attention to class II isoforms of phosphoinositide 3-kinase (PI3K) has emerged, mainly fuelled by evidence suggesting a distinct non-redundant role for these enzymes compared with other PI3Ks. Despite this renewed interest, many questions remain on the specific functions regulated by these isoforms and their mechanism of activation and action. In the present review, we discuss results from recent studies that have provided some answers to these questions.


Sign in / Sign up

Export Citation Format

Share Document