Preparation and characterization of chloromethylated/quaternized poly(phthalazinone ether sulfone ketone) for positively charged nanofiltration membranes

2007 ◽  
Vol 107 (3) ◽  
pp. 1809-1816 ◽  
Author(s):  
Chun Yan ◽  
Shouhai Zhang ◽  
Daling Yang ◽  
Xigao Jian
2013 ◽  
Vol 721 ◽  
pp. 45-48
Author(s):  
Run Lin Han

2-Hydroxypropyltrimethyl ammonium chloride chitosan (HACC) with positively charged character was utilized to fabricate the functional layer of the composite NF membrane and reinforced polyetherimide (PEI) ultrafiltration (UF) membrane was used as the support layer. When the composite membrane was prepared under optimized conditions and tested at 0.4 MPa and 10 oC, the flux of the composite NF membrane was about 18 L/m2h and the MgCl2 rejection of it was about 81.6%. The composite membrane showed classical positively charged membrane character which had higher rejection to high valent inorganic salts.


Studies of anion transport across the red blood cell membrane fall generally into two categories: (1) those concerned with the operational characterization of the transport system, largely by kinetic analysis and inhibitor studies; and (2) those concerned with the structure of band 3, a transmembrane peptide identified as the transport protein. The kinetics are consistent with a ping-pong model in which positively charged anion-binding sites can alternate between exposure to the inside and outside compartments but can only shift one position to the other when occupied by an anion. The structural studies on band 3 indicate that only 60 % of the peptide is essential for transport. That particular portion is in the form of a dimer consisting of an assembly of membrane-crossing strands (each monomer appears to cross at least five times). The assembly presents its hydrophobic residues toward the interior of the bilayer, but its hydrophilic residues provide an aqueous core. The transport involves a small conformational change in which an anion-binding site (involving positively charged residues) can alternate between positions that are topologically in and topologically out.


2020 ◽  
Vol 8 (15) ◽  
pp. 5239-5247 ◽  
Author(s):  
Giulio Di Palma ◽  
Francesco Silvio Gentile ◽  
Valentina Lacivita ◽  
William C. Mackrodt ◽  
Mauro Causà ◽  
...  

Structural, EPR and vibrational characterization of the N2, N+2 and N++2 defects in diamond from ab initio quantum-mechanical calculations with the CRYSTAL code.


2020 ◽  
Vol 48 (20) ◽  
pp. 11421-11433
Author(s):  
Louise Dalskov ◽  
Ryo Narita ◽  
Line L Andersen ◽  
Nanna Jensen ◽  
Sonia Assil ◽  
...  

Abstract IRF3 and IRF7 are critical transcription factors in the innate immune response. Their activation is controlled by phosphorylation events, leading to the formation of homodimers that are transcriptionally active. Phosphorylation occurs when IRF3 is recruited to adaptor proteins via a positively charged surface within the regulatory domain of IRF3. This positively charged surface also plays a crucial role in forming the active homodimer by interacting with the phosphorylated sites stabilizing the homodimer. Here, we describe a distinct molecular interaction that is responsible for adaptor docking and hence phosphorylation as well as a separate interaction responsible for the formation of active homodimer. We then demonstrate that IRF7 can be activated by both MAVS and STING in a manner highly similar to that of IRF3 but with one key difference. Regulation of IRF7 appears more tightly controlled; while a single phosphorylation event is sufficient to activate IRF3, at least two phosphorylation events are required for IRF7 activation.


Coatings ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 741
Author(s):  
Lun Nie ◽  
Guangtao Chang ◽  
Ruoxin Li

A self-dispersing pigment was produced by a diazonium coupling reaction; the pigment reacted with aromatic diazonium salts which were generated by the reaction of p-aminobenzene sulfonic acid and sodium nitrite. The surface of the pigment particles was negatively charged due to sulfonic acid groups on the pigment surface. The pigment particle size and zeta potential were, respectively, 134.5 nm and −45.4 mV at neutral pH. The wool surface was positively charged by adjusting the pH; then the anionic self-dispersing pigment dyed the cationic wool. The results show that self-dispersing pigment can adhere well without a binder, and that the K/S value is closely related to pH, dyeing time, and the amount of pigment. The color fastness of the wool was good and the light fastness of the wool was grade 5, which is better than acid dyes. Self-dispersing pigments are potential candidates for dyeing high-weather-resistance textiles.


Sign in / Sign up

Export Citation Format

Share Document