Cellulose nanofibrils in biobased multilayer films for food packaging

2017 ◽  
Vol 134 (19) ◽  
Author(s):  
Mika Vähä-Nissi ◽  
Hanna M. Koivula ◽  
Heidi M. Räisänen ◽  
Jari Vartiainen ◽  
Pietro Ragni ◽  
...  
Nanomaterials ◽  
2018 ◽  
Vol 8 (10) ◽  
pp. 800 ◽  
Author(s):  
Peng Lu ◽  
Ren Liu ◽  
Xin Liu ◽  
Min Wu

Cellulose hydrogels are often prepared from native cellulose through a direct cellulose dissolution approach that often involves tedious process and solvent recovery problems. A self-supporting cellulose hydrogel was prepared by gelation of the TEMPO-oxidized bagasse cellulose nanofibrils (CNF) triggered by strong crosslinking between carboxylate groups and Zn2+. TEMPO process was used to generate negatively charged carboxylate groups on CNF surface to provide a high binding capability to Zn2+. Three TEMPO-oxidized CNFs of different carboxylate contents were prepared and characterized. TEM and AFM microscopes suggested that the sizes of CNFs were fined down and carboxylated cellulose nanofibrils (TOCNFs) of 5–10 nm wide, 200–500 nm long, and carboxylate contents 0.73–1.29 mmol/g were obtained. The final structures and compressive strength of hydrogels were primarily influenced by interfibril Zn2+-carboxylate interactions, following the order of TOCNFs concentration > content of carboxylate groups > concentration of zinc ions. A CO2 sensitive self-supporting cellulose hydrogel was developed as a colorimetric indicator of food spoilage for intelligent food packaging applications.


2013 ◽  
Vol 829 ◽  
pp. 534-538 ◽  
Author(s):  
Alireza Shakeri ◽  
Sattar Radmanesh

Cellulose nanofibrils ( NF ) have several advantages such as biodegradability and safety toward human health. Zein is a biodegradable polymer with potential use in food packaging applications. It appears that polymer nanocomposites are one of the most promising applications of zein films. Cellulose NF were prepared from starting material Microcrystalline cellulose (MCC) by an application of a high-pressure homogenizer at 20,000 psi and treatment consisting of 15 passes. Methods such as atomic force microscopy were used for confirmation of nanoscale size production of cellulose. The average diameter 45 nm were observed. Zeincellulose NF nanocomposite films were prepared by casting ethanol suspensions of Zein with different amounts of cellulose NF in the 0% to 5%wt. The nanocomposites were characterized by using Fourier transform infrared spectroscopy ( FTIR ), Atomic force microscopy ( AFM ) and X-ray diffraction ( XRD ) analysis. From the FTIR spectra the various groups present in the Zein blend were monitored. The homogeneity, morphology and crystallinity of the blends were ascertained from the AFM and XRD data, respectively. The thermal resistant of the zein nanocomposite films improved as the nanocellulose content increased. These obtained materials are transparent, flexible and present significantly better physical properties than the corresponding unfilled Zein films.


Nanomaterials ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 2356
Author(s):  
Kelly Figueroa-Lopez ◽  
Sergio Torres-Giner ◽  
Inmaculada Angulo ◽  
Maria Pardo-Figuerez ◽  
Jose Escuin ◽  
...  

Active multilayer films based on polyhydroxyalkanoates (PHAs) with and without high barrier coatings of cellulose nanocrystals (CNCs) were herein successfully developed. To this end, an electrospun antimicrobial hot-tack layer made of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) derived from cheese whey, a by-product from the dairy industry, was deposited on a previously manufactured blown film of commercial food contact PHA-based resin. A hybrid combination of oregano essential oil (OEO) and zinc oxide nanoparticles (ZnONPs) were incorporated during the electrospinning process into the PHBV nanofibers at 2.5 and 2.25 wt%, respectively, in order to provide antimicrobial properties. A barrier CNC coating was also applied by casting from an aqueous solution of nanocellulose at 2 wt% using a rod at 1m/min. The whole multilayer structure was thereafter assembled in a pilot roll-to-roll laminating system, where the blown PHA-based film was located as the outer layers while the electrospun antimicrobial hot-tack PHBV layer and the barrier CNC coating were placed as interlayers. The resultant multilayer films, having a final thickness in the 130–150 µm range, were characterized to ascertain their potential in biodegradable food packaging. The multilayers showed contact transparency, interlayer adhesion, improved barrier to water and limonene vapors, and intermediate mechanical performance. Moreover, the films presented high antimicrobial and antioxidant activities in both open and closed systems for up to 15 days. Finally, the food safety of the multilayers was assessed by migration and cytotoxicity tests, demonstrating that the films are safe to use in both alcoholic and acid food simulants and they are also not cytotoxic for Caco-2 cells.


2017 ◽  
Vol 9 (6) ◽  
pp. 5477-5485 ◽  
Author(s):  
Lei Dai ◽  
Zhu Long ◽  
Jie Chen ◽  
Xingye An ◽  
Dong Cheng ◽  
...  

Molecules ◽  
2020 ◽  
Vol 25 (6) ◽  
pp. 1344 ◽  
Author(s):  
Ali H. Tayeb ◽  
Mehdi Tajvidi ◽  
Douglas Bousfield

Environmental and health concerns are driving the need for new materials in food packaging to replace poly- or perfluorinated compounds, aluminum layers, and petroleum-based polymers. Cellulose nanofibrils (CNF) have been shown by a number of groups to form excellent barrier layers to oxygen and grease. However, the influence of lignin-containing cellulose nanofibrils (LCNF) on film barrier properties has not been well reported. Herein, thin films (16 g/m2) from LCNF and CNF were formed on paper substrates through a filtration technique that should mimic the addition of material at the wet end of a paper machine. Surface, barrier and mechanical attributes of these samples were characterized. The analysis on the surface free energy and water contact angle pointed to the positive role of lignin distribution in inducing a certain degree of water repellency. The observed oxygen transmission rate (OTR) and water vapor permeability (WVP) values of LCNF-coated samples were nearly similar to those with CNF. However, the presence of lignin improved the oil proof performance; these layered designs exhibited an excellent resistance to grease (kit No. 12). The attained papers with LCNF coat were formed into bowl-like containers using metal molds and a facile oven drying protocol to evaluate their resistance to oil penetration over a longer period. The results confirmed the capability of LCNF layer in holding commercially available cooking oils with no evidence of leakage for over five months. Also, an improvement in the tensile strength and elongation at break was observed in the studied papers. Overall, the proposed packaging material possesses viable architecture and can be considered as a fully wood-based alternative for the current fluorocarbon systems.


Polymers ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 1780
Author(s):  
Shunli Chen ◽  
Min Wu ◽  
Caixia Wang ◽  
Shun Yan ◽  
Peng Lu ◽  
...  

The use of advanced and eco-friendly materials has become a trend in the field of food packaging. Cellulose nanofibrils (CNFs) were prepared from bleached bagasse pulp board by a mechanical grinding method and were used to enhance the properties of a chitosan/oregano essential oil (OEO) biocomposite packaging film. The growth inhibition rate of the developed films with 2% (w/w) OEO against E. coli and L. monocytogenes reached 99%. With the increased levels of added CNFs, the fibrous network structure of the films became more obvious, as was determined by SEM and the formation of strong hydrogen bonds between CNFs and chitosan was observed in FTIR spectra, while the XRD pattern suggested that the strength of diffraction peaks and crystallinity of the films slightly increased. The addition of 20% CNFs contributed to an oxygen-transmission rate reduction of 5.96 cc/m2·day and water vapor transmission rate reduction of 741.49 g/m2·day. However, the increase in CNFs contents did not significantly improve the barrier properties of the film. The addition of 60% CNFs significantly improved the barrier properties of the film to light and exhibited the lowest light transmittance (28.53%) at 600 nm. Addition of CNFs to the chitosan/OEO film significantly improved tensile strength and the addition of 60% CNFs contributed to an increase of 16.80 MPa in tensile strength. The developed chitosan/oregano essential oil/CNFs biocomposite film with favorable properties and antibacterial activity can be used as a green, functional material in the food-packaging field. It has the potential to improve food quality and extend food shelf life.


Sign in / Sign up

Export Citation Format

Share Document