Long-term biomass yields of giant reed, mimosa and switchgrass in Alabama

2013 ◽  
Vol 8 (1) ◽  
pp. 59-66 ◽  
Author(s):  
Huang Ping ◽  
David I. Bransby ◽  
Edzard van Santen
Keyword(s):  
Agronomy ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 2376
Author(s):  
Pavel Suran ◽  
Martin Kulhánek ◽  
Jiří Balík ◽  
Jindřich Černý ◽  
Ondřej Sedlář

Sulfur nutrition is a critical part of proper crop growth and development. In our study, biomass yields (BY) and S uptake were investigated on long-term maize monoculture on haplic luvisol soil during the 23 years of this trial, as well as changes in water extractable (Sw), adsorbed (Sads), mineral (Sav), and pseudo-total S (St) fractions. Treatments used in this study are: (1) Control (Cont); (2) ammonium sulfate (AS); (3) urea and ammonium nitrate (UAN); (4) UAN + phosphorus and potassium (UAN + PK); (5) UAN + phosphorus, magnesium, sulfur (UAN + PMgS); and (6) Fallow. Recently, the Mehlich 3 method started to be used in the Czech Republic to determine content of plant available S. Using this method, it was found that the content of S extracted by Mehlich 3 (SM3) closely correlates to Sav in both topsoil and subsoil (r = 0.958 in 1997 and 0.990 in 2019, both at p < 0.001). We also found that, on average, during the entire experiment, all treatments had increased yields over Cont (135–147%) and increased S uptake (291, 192, 180, and 246% of Cont for AS, UAN, UAN + PK, and UAN + PMgS, respectively). Examining the changes from 1997 to 2019 in topsoil (0–30 cm depth), we discovered a decrease of S content in Sw, Sads, Sav, and St fractions on all treatments to an average of 34.6%, 65.8%, 42.2%, and 78.6% of their initial values. The exception was AS treatment, which doubled its initial content in mineral fractions and maintained the same levels of St, and which we attribute to the very high dose of S on this treatment (142 kg ha−1 year−1). Using the simple balance method, AS and UAN + PMgS treatments lost 142.2 and 95.3 kg S ha−1 year−1 to other sinks, except plant uptake, from the entire soil profile (0–60 cm) during 23 years of experiment. Other treatments also show significant losses with the exception of Fallow. Given these results, it is clear that content of sulfur in soil is generally decreasing and attention should be paid mainly towards minimizing of its losses.


Agronomy ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 923
Author(s):  
Efthymia Alexopoulou ◽  
Federica Zanetti ◽  
Eleni G. Papazoglou ◽  
Konstantinos Iordanoglou ◽  
Andrea Monti

Switchgrass (Panicum virgatum L.) has been identified in the USA as an ideal biomass crop, in relation to its wide environmental suitability, mainly linked to the availability of both upland and lowland ecotypes, allowing the possibility of growing this species in most of the North American region. Switchgrass is conventionally grown for forage, but more recently, it has been considered as a model biofuel crop. Early European studies on switchgrass as a bioenergy crop started in the late 1990s, when a multi-location field trial was established in Greece (Aliartos) and Italy (Ozzano) to compare the productivity of 13 switchgrass genotypes, including upland (Carthage, Blackwell, Caddo, CIR, Forestburg, SU 94-1, Summer) and lowland (Alamo, Kanlow, Pangburn, SL 93-2, SL 93-3, SL94-1) genotypes. The scope was to identify the most suitable ecotype within each environment and, possibly, the best performing variety. The trials lasted 17 years (1998–2014) in Greece and 13 years (1998–2010) in Italy. While in Italy the trial was rainfed and unfertilized, in Greece, where the soil was marginal, drip irrigation was always applied, and the plots were fertilized regularly. The biomass yields in Greece, as averages across the 17 years, were similar for the lowland and upland varieties (11.5 vs. 11.1 Mg ha−1, respectively), while in Italy, as averages across the 13 years, the differences were relevant: 15.4 vs. 11.3 Mg ha−1 for lowland and upland, respectively. Alamo (lowland) was the most productive variety, both in Greece and Italy, with average annual yields of 12.7 and 16.6 Mg ha−1, respectively; CIR in Greece (10.1 Mg ha−1) and Forestburg in Italy (9.1 Mg ha−1) (both upland) were the least productive genotypes. The present results demonstrate the good suitability of switchgrass as biomass crop for the Mediterranean climate. Despite the very marginal soil (i.e., very shallow and with a sandy texture) in the Greek trial, the application of regular fertilization and irrigation produced biomass yields above 11 Mg ha−1 (grand mean) in the present 17-year-long study.


2011 ◽  
Vol 77 (7) ◽  
pp. 2239-2246 ◽  
Author(s):  
Gennaro Agrimi ◽  
Luca Brambilla ◽  
Gianni Frascotti ◽  
Isabella Pisano ◽  
Danilo Porro ◽  
...  

ABSTRACTThe modification of enzyme cofactor concentrations can be used as a method for both studying and engineering metabolism. We variedSaccharomyces cerevisiaemitochondrial NAD levels by altering expression of its specific mitochondrial carriers. Changes in mitochondrial NAD levels affected the overall cellular concentration of this coenzyme and the cellular metabolism. In batch culture, a strain with a severe NAD depletion in mitochondria succeeded in growing, albeit at a low rate, on fully respiratory media. Although the strain increased the efficiency of its oxidative phosphorylation, the ATP concentration was low. Under the same growth conditions, a strain with a mitochondrial NAD concentration higher than that of the wild type similarly displayed a low cellular ATP level, but its growth rate was not affected. In chemostat cultures, when cellular metabolism was fully respiratory, both mutants showed low biomass yields, indicative of impaired energetic efficiency. The two mutants increased their glycolytic fluxes, and as a consequence, the Crabtree effect was triggered at lower dilution rates. Strikingly, the mutants switched from a fully respiratory metabolism to a respirofermentative one at the same specific glucose flux as that of the wild type. This result seems to indicate that the specific glucose uptake rate and/or glycolytic flux should be considered one of the most important independent variables for establishing the long-term Crabtree effect. In cells growing under oxidative conditions, bioenergetic efficiency was affected by both low and high mitochondrial NAD availability, which suggests the existence of a critical mitochondrial NAD concentration in order to achieve optimal mitochondrial functionality.


2021 ◽  
pp. 1-22
Author(s):  
Laura Larsen

Abstract Using a socioecological metabolism approach to analyze data from the Census of Agriculture, this article examines the underlying soil fertility of two case study areas in the Canadian province of Saskatchewan through the calculation of soil nitrogen balances. The Rural Municipalities of Wise Creek and Livingston are 300 miles apart and therefore have different topography, soil types, and rainfall levels, even though both are within the northern Great Plains. Over 85 years, from first settlement in the 1910s until the beginning of the twenty-first century, Wise Creek agriculture focused increasingly on livestock production while in Livingston farmers began to grow a greater variety of crops, most notably incorporating canola into rotations. Despite the differences between the two case studies, the pattern of soil nitrogen losses was remarkably similar, with biomass yields declining along with soil nitrogen. The addition of chemical nitrogen fertilizers since the 1960s did not produce yields matching historic highs, nor did a renewed focus on livestock. Wise Creek and Livingston showed two different responses to declining yields, but neither one ultimately provided a long-term solution to the problem of soil nutrient depletion and consequent productivity declines.


2015 ◽  
Vol 8 (4) ◽  
pp. 1492-1499 ◽  
Author(s):  
Efthymia Alexopoulou ◽  
Federica Zanetti ◽  
Danilo Scordia ◽  
Walter Zegada-Lizarazu ◽  
Myrsini Christou ◽  
...  

2014 ◽  
Vol 852 ◽  
pp. 757-763 ◽  
Author(s):  
Xin Cun Hou ◽  
Xi Feng Fan ◽  
Yi Zhu ◽  
Ju Ying Wu ◽  
Chun Qiao Zhao ◽  
...  

Lignocellulosic herbaceous plant is a high-quality kind of biomass resource. In China, large-scale cultivation of lignocellulosic herbaceous plant on marginal land is a crucial method to resolve sustainable supplement of biomass feedstock. In order to analyse its potential, this research conducted large-scale cultivation of four species of lignocellulosic herbaceous plant, switchgrass, silver reed, giant reed and hybrid pennisetum on a contaminated land in Beijing suburb. And a quantitative analysis of their biomass yields and ecological-economic values were performed in the sequential four growing seasons. With high annual biomass yields, 21.37 ton·hm-2, 26.21 ton·hm-2, 44.48 ton·hm-2 and 57.61 ton·hm-2, respectively, these four species of lignocellulosic herbaceous plant had enormous ecological values, including carbon fixation, oxygen release, sulfur dioxide absorption and dust retardment, and considerable economic values, according to standard coal conversion and cellulosic ethanol production. Of these four species, hybrid pennisetum is optimal in ecological value on contaminated land in the future, while giant reed in economic value.


2019 ◽  
Vol 9 (24) ◽  
pp. 5425
Author(s):  
Alberto Assirelli ◽  
Vincenzo Civitarese ◽  
Giuseppina Caracciolo ◽  
Maura Sannino ◽  
Salvatore Faugno

This study evaluated the possibility of adopting haymaking farming machinery in giant reed (Arundo donax L.) harvesting. The test shows the technical and energy aspects of mechanical harvesting using only one specific machine, a shredding machine, designed and developed by an Italian constructor for large biomass herbaceous crops (giant reed, sorghums, switchgrass, Mischantus, etc). It is designed for high vegetative growth crops, as it is able to spread products over all soil surfaces or, alternatively, carry out windrowing. Tests were conducted in the south of Italy (Campania region) on the experimental farm Torre Lama in Bellizzi (SA). Biomass was shredded, dried in the field, and baled for use in a logistic chain and storage. The first step was the cutting and shredding of biomass crops with the specific shredder rear-mounted in an agricultural tractor. The biomass then was dried on the field, constantly monitored for moisture content, and finally, baled with a trailed round baler for storage (second step) and used in a specific logistic chain. The test showed good performance of the shredder machine between 1.17 and 1.77 ha h−1 with an operative speed between 3.9 and 5. 9 km h−1. To define the hourly production, a high wet production level of 60.70 t ha−1 and a low level of 56 t ha−1 were used as references. Under the climatic conditions of the experimental test, this harvesting system showed some advantages, such as the possibility of immediate and long-term biomass storage (less than 14% moisture content), the potential alternative use of the biomass, and the reduced resource use compared to that of other ordinary crops growing in the area.


Sign in / Sign up

Export Citation Format

Share Document