Optimization of CRISPR‐Cas9 through promoter replacement and efficient production of L‐homoserine in Corynebacterium glutamicum

2021 ◽  
pp. 2100093
Author(s):  
Ning Li ◽  
Miao Wang ◽  
Shiqin Yu ◽  
Jingwen Zhou
Catalysts ◽  
2018 ◽  
Vol 8 (11) ◽  
pp. 561 ◽  
Author(s):  
Kei-Anne Baritugo ◽  
Hee Taek Kim ◽  
Mi Na Rhie ◽  
Seo Young Jo ◽  
Tae Uk Khang ◽  
...  

Corynebacterium glutamicum is an industrial strain used for the production of valuable chemicals such as L-lysine and L-glutamate. Although C. glutamicum has various industrial applications, a limited number of tunable systems are available to engineer it for efficient production of platform chemicals. Therefore, in this study, we developed a novel tunable promoter system based on repeats of the Vitreoscilla hemoglobin promoter (Pvgb). Tunable expression of green fluorescent protein (GFP) was investigated under one, four, and eight repeats of Pvgb (Pvgb, Pvgb4, and Pvgb8). The intensity of fluorescence in recombinant C. glutamicum strains increased as the number of Pvgb increased from single to eight (Pvgb8) repeats. Furthermore, we demonstrated the application of the new Pvgb promoter-based vector system as a platform for metabolic engineering of C. glutamicum by investigating 5-aminovaleric acid (5-AVA) and gamma-aminobutyric acid (GABA) production in several C. glutamicum strains. The profile of 5-AVA and GABA production by the recombinant strains were evaluated to investigate the tunable expression of key enzymes such as DavBA and GadBmut. We observed that 5-AVA and GABA production by the recombinant strains increased as the number of Pvgb used for the expression of key proteins increased. The recombinant C. glutamicum strain expressing DavBA could produce higher amounts of 5-AVA under the control of Pvgb8 (3.69 ± 0.07 g/L) than the one under the control of Pvgb (3.43 ± 0.10 g/L). The average gamma-aminobutyric acid production also increased in all the tested strains as the number of Pvgb used for GadBmut expression increased from single (4.81–5.31 g/L) to eight repeats (4.94–5.58 g/L).


Catalysts ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 203
Author(s):  
Zhishuai Chang ◽  
Wei Dai ◽  
Yufeng Mao ◽  
Zhenzhen Cui ◽  
Zhiwen Wang ◽  
...  

3-Hydroxypropionic acid (3-HP) has been recognized as one of the top value-added building block chemicals, due to its numerous potential applications. Over the past decade, biosynthesis of 3-HP via the malonyl-CoA pathway has been increasingly favored because it is balanced in terms of ATP and reducing equivalents, does not require the addition of costly coenzymes, and can utilize renewable lignocellulosic biomass. In this study, gene mcr encoding malonyl-CoA reductase from Chloroflexus aurantiacus was introduced into Corynebacterium glutamicum ATCC13032 to construct the strain Cgz1, which accumulated 0.30 g/L 3-HP. Gene ldhA encoding lactate dehydrogenase was subsequently deleted to eliminate lactate accumulation, but this decreased 3-HP production and greatly increased acetate accumulation. Then, different acetate utilization genes were overexpressed to reuse the acetate, and the best candidate Cgz5 expressing endogenous gene pta could effectively reduce the acetate accumulation and produced 0.68 g/L 3-HP. To enhance the supply of the precursor acetyl-CoA, acetate was used as an ancillary carbon source to improve the 3-HP production, and 1.33 g/L 3-HP could be produced from a mixture of glucose and acetate, with a 2.06-fold higher yield than from glucose alone. Finally, to inhibit the major 3-HP competing pathway-fatty acid synthesis, 10 μM cerulenin was added and strain Cgz5 produced 3.77 g/L 3-HP from 15.47 g/L glucose and 4.68 g/L acetate with a yield of 187 mg/g substrate in 48 h, which was 12.57-fold higher than that of Cgz1. To our best knowledge, this is the first report on engineering C. glutamicum to produce 3-HP via the malonyl-CoA pathway. The results indicate that the innocuous biosafety level I microorganism C. glutamicum is a potential industrial 3-HP producer.


2015 ◽  
Vol 81 (21) ◽  
pp. 7496-7508 ◽  
Author(s):  
Andrea Michel ◽  
Abigail Koch-Koerfges ◽  
Karin Krumbach ◽  
Melanie Brocker ◽  
Michael Bott

ABSTRACTCorynebacterium glutamicum, a model organism in microbial biotechnology, is known to metabolize glucose under oxygen-deprived conditions tol-lactate, succinate, and acetate without significant growth. This property is exploited for efficient production of lactate and succinate. Our detailed analysis revealed that marginal growth takes place under anaerobic conditions with glucose, fructose, sucrose, or ribose as a carbon and energy source but not with gluconate, pyruvate, lactate, propionate, or acetate. Supplementation of glucose minimal medium with tryptone strongly enhanced growth up to a final optical density at 600 nm (OD600) of 12, whereas tryptone alone did not allow growth. Amino acids with a high ATP demand for biosynthesis and amino acids of the glutamate family were particularly important for growth stimulation, indicating ATP limitation and a restricted carbon flux into the oxidative tricarboxylic acid cycle toward 2-oxoglutarate. Anaerobic cultivation in a bioreactor with constant nitrogen flushing disclosed that CO2is required to achieve maximal growth and that the pH tolerance is reduced compared to that under aerobic conditions, reflecting a decreased capability for pH homeostasis. Continued growth under anaerobic conditions indicated the absence of an oxygen-requiring reaction that is essential for biomass formation. The results provide an improved understanding of the physiology ofC. glutamicumunder anaerobic conditions.


2019 ◽  
Vol 46 (12) ◽  
pp. 1685-1695 ◽  
Author(s):  
Wei Liu ◽  
Xiangcheng Zhu ◽  
Jiazhang Lian ◽  
Lei Huang ◽  
Zhinan Xu

2016 ◽  
Vol 82 (20) ◽  
pp. 6141-6149 ◽  
Author(s):  
Dennis Binder ◽  
Jonas Frohwitter ◽  
Regina Mahr ◽  
Claus Bier ◽  
Alexander Grünberger ◽  
...  

ABSTRACTPrecise control of microbial gene expression resulting in a defined, fast, and homogeneous response is of utmost importance for synthetic bio(techno)logical applications. However, even broadly applied biotechnological workhorses, such asCorynebacterium glutamicum, for which induction of recombinant gene expression commonly relies on the addition of appropriate inducer molecules, perform moderately in this respect. Light offers an alternative to accurately control gene expression, as it allows for simple triggering in a noninvasive fashion with unprecedented spatiotemporal resolution. Thus, optogenetic switches are promising tools to improve the controllability of existing gene expression systems. In this regard, photocaged inducers, whose activities are initially inhibited by light-removable protection groups, represent one of the most valuable photoswitches for microbial gene expression. Here, we report on the evaluation of photocaged isopropyl-β-d-thiogalactopyranoside (IPTG) as a light-responsive control element for the frequently appliedtac-based expression module inC. glutamicum. In contrast to conventional IPTG, the photocaged inducer mediates a tightly controlled, strong, and homogeneous expression response upon short exposure to UV-A light. To further demonstrate the unique potential of photocaged IPTG for the optimization of production processes inC. glutamicum, the optogenetic switch was finally used to improve biosynthesis of the growth-inhibiting sesquiterpene (+)-valencene, a flavoring agent and aroma compound precursor in food industry. The variation in light intensity as well as the time point of light induction proved crucial for efficient production of this toxic compound.IMPORTANCEOptogenetic tools are light-responsive modules that allow for a simple triggering of cellular functions with unprecedented spatiotemporal resolution and in a noninvasive fashion. Specifically, light-controlled gene expression exhibits an enormous potential for various synthetic bio(techno)logical purposes. Before our study, poor inducibility, together with phenotypic heterogeneity, was reported for the IPTG-mediated induction oflac-based gene expression inCorynebacterium glutamicum. By applying photocaged IPTG as a synthetic inducer, however, these drawbacks could be almost completely abolished. Especially for increasing numbers of parallelized expression cultures, noninvasive and spatiotemporal light induction qualifies for a precise, homogeneous, and thus higher-order control to fully automatize or optimize future biotechnological applications.


Author(s):  
Suvasini Balasubramanian ◽  
Jun Chen ◽  
Vinoth Wigneswaran ◽  
Claus Heiner Bang-Berthelsen ◽  
Peter Ruhdal Jensen

With emerging interests in heterologous production of proteins such as antibodies, growth factors, nanobodies, high-quality protein food ingredients, etc. the demand for efficient production hosts increases. Corynebacterium glutamicum is an attractive industrial host with great secretion capacity to produce therapeutics. It lacks extracellular protease and endotoxin activities and easily achieves high cell density. Therefore, this study focuses on improving protein production and secretion in C. glutamicum with the use of droplet-based microfluidic (DBM) high throughput screening. A library of C. glutamicum secreting β-glucosidase was generated using chemical mutagenesis coupled with DBM screening of 200,000 mutants in just 20 min. Among 100 recovered mutants, 16 mutants exhibited enhanced enzyme secretion capacity, 13 of which had unique mutation profiles. Whole-genome analysis showed that approximately 50–150 SNVs had occurred on the chromosome per mutant. Functional enrichment analysis of genes with non-synonymous mutations showed overrepresentation of genes involved in protein synthesis and secretion relevant biological processes, such as DNA and ribosome RNA synthesis, protein secretion and energy turnover. Two mutants JCMT1 and JCMT8 exhibited the highest secretion with a six and a fivefold increase in the β-glucosidase activity in the supernatant, respectively, relative to the reference strain JC0190. After plasmid curing, a new plasmid with the gene encoding α-amylase was cloned into these two mutants. The new strains SB024 and SB025 also exhibited a five and a sixfold increase in α-amylase activity in the supernatant, respectively, relative to the reference strain SB023. The results demonstrate how DBM screening can serve as a powerful development tool to improve cell factories for the production and secretion of heterologous proteins.


2018 ◽  
Vol 9 ◽  
Author(s):  
Fernando Pérez-García ◽  
João M. P. Jorge ◽  
Annika Dreyszas ◽  
Joe Max Risse ◽  
Volker F. Wendisch

Author(s):  
Shuhei Hashiro ◽  
Yasuhiko Chikami ◽  
Haruka Kawaguchi ◽  
Alexander A. Krylov ◽  
Teruyuki Niimi ◽  
...  

Abstract RNA-based pesticides exert their function by suppressing the expression of an essential gene in the target pest through RNA interference caused by double-stranded RNA (dsRNA). Here, we selected target genes for growth suppression of the solanaceous crop pests ladybird beetle (Henosepilachna vigintioctopunctata) and Colorado potato beetle (Leptinotarsa decemlineata)-the death-associated inhibitor of apoptosis protein 1 gene (diap1), and an orthologous gene of the COPI coatomer protein complex (copI), respectively. We constructed a cost-competitive overproduction system for dsRNA using Corynebacterium glutamicum as a host bacterium. The dsRNA expression unit was equipped with two sets of promoters and terminators derived from coliphage T7, and the convergent expression system was designed to be selectively transcribed by T7 RNA polymerase. This expression system efficiently overproduced both target dsRNAs. On culture in a jar fermentor, the yield of diap1-targeting dsRNA (approximately 360 bp) was > 1 g per liter of culture. Long-chain diap1-targeting dsRNAs (up to around 1 kbp) could be produced without a substantial loss of efficiency. dsRNA accumulated in C. glutamicum significantly suppressed larval growth of H. vigintioctopunctata. The dsRNA expression technology developed here is expected to substantially reduce dsRNA production costs. Our method can be applied for a wide range of industrial uses, including agricultural pest control. Key points • Overexpression of dsRNA was achieved in C. glutamicum using a coliphage T7 system. • The best strain produced > 1 g/L of the target dsRNA species, for use as an insecticide. • The developed system efficiently produced long dsRNA species, up to ~ 1 kbp.


Sign in / Sign up

Export Citation Format

Share Document