Application of a bioluminescence ATP assay in brewery wastewater treatment studies

1979 ◽  
Vol 21 (7) ◽  
pp. 1301-1314 ◽  
Author(s):  
D. W. Hysert ◽  
F. B. Knudsen ◽  
N. M. Morrison ◽  
G. van Gheluwe ◽  
T. Lom
2020 ◽  
Vol 11 (1) ◽  
pp. 174
Author(s):  
Konstantinos P. Papadopoulos ◽  
Christina N. Economou ◽  
Athanasia G. Tekerlekopoulou ◽  
Dimitris V. Vayenas

Algal/cyanobacterial biofilm photobioreactors provide an alternative technology to conventional photosynthetic systems for wastewater treatment based on high biomass production and easy biomass harvesting at low cost. This study introduces a novel cyanobacteria-based biofilm photobioreactor and assesses its performance in post-treatment of brewery wastewater and biomass production. Two different supporting materials (glass/polyurethane) were tested to investigate the effect of surface hydrophobicity on biomass attachment and overall reactor performance. The reactor exhibited high removal efficiency (over 65%) of the wastewater’s pollutants (chemical oxygen demand, nitrate, nitrite, ammonium, orthophosphate, and total Kjeldahl nitrogen), while biomass per reactor surface reached 13.1 and 12.8 g·m−2 corresponding to 406 and 392 mg·L−1 for glass and polyurethane, respectively, after 15 days of cultivation. The hydrophilic glass surface favored initial biomass adhesion, although eventually both materials yielded complete biomass attachment, highlighting that cell-to-cell interactions are the dominant adhesion mechanism in mature biofilms. It was also found that the biofilm accumulated up to 61% of its dry weight in carbohydrates at the end of cultivation, thus making the produced biomass a suitable feedstock for bioethanol production.


2008 ◽  
Vol 78 (5) ◽  
pp. 873-880 ◽  
Author(s):  
Yujie Feng ◽  
Xin Wang ◽  
Bruce E. Logan ◽  
He Lee

2020 ◽  
Vol 11 ◽  
pp. 100420 ◽  
Author(s):  
Sarah Brunschweiger ◽  
Emile Tabu Ojong ◽  
Jana Weisser ◽  
Christian Schwaferts ◽  
Martin Elsner ◽  
...  

1997 ◽  
Vol 36 (11) ◽  
pp. 171-179 ◽  
Author(s):  
J. H. Rensink ◽  
W. H. Rulkens

Pilot plant experiments have been carried out to study the mineralization of sludge from biological wastewater treatment plants by worms such as Tubificidae. Trickling filters filled with lava slags were continuously fed with a certain quantity of excess activated sludge of a Dutch brewery wastewater treatment plant (Bavaria) by recirculation during 10 to 14 days. At the starting point of each experiment the trickling filters were inoculated with Tubificidae. Recirculation of sludge showed that use of Tubificidae resulted in a COD reduction of the sludge (mixed liquor) of 18–67–. Without worms this reduction was substantially lower. The sludge production in a pilot activated sludge system for treating settled domestic wastewater reduced from 0.40 to 0.15 g MLSS/g COD removed when Tubificidae were added to the system. The lower amounts of sludge were always accompanied by an increase of nitrate and phosphate concentration in the wastewater. There was no disturbance of the nitrification process. Application of Tubificidae or other worms may have interesting potential for practical application.


Author(s):  
David Kwame Amenorfenyo ◽  
Xianghu Huang ◽  
Yulei Zhang ◽  
Qitao Zeng ◽  
Ning Zhang ◽  
...  

Concerns about environmental safety have led to strict regulations on the discharge of final brewery effluents into water bodies. Brewery wastewater contains huge amounts of organic compounds that can cause environmental pollution. The microalgae wastewater treatment method is an emerging environmentally friendly biotechnological process. Microalgae grow well in nutrient-rich wastewater by absorbing organic nutrients and converting them into useful biomass. The harvested biomass can be used as animal feed, biofertilizer, and an alternative energy source for biodiesel production. This review discusses conventional and current brewery wastewater treatment methods, and the application and potential of microalgae in brewery wastewater treatment. The study also discusses the benefits as well as challenges associated with microalgae brewery and other industrial wastewater treatments.


Sign in / Sign up

Export Citation Format

Share Document