Downregulation of CLDN6 inhibits cell proliferation, migration, and invasion via regulating EGFR/AKT/mTOR signalling pathway in hepatocellular carcinoma

2020 ◽  
Vol 38 (5) ◽  
pp. 541-548
Author(s):  
Lingyuan Huang ◽  
Chanjuan Zhao ◽  
Kai Sun ◽  
Dandan Yang ◽  
Linxia Yan ◽  
...  
2017 ◽  
Vol 41 (6) ◽  
pp. 2289-2306 ◽  
Author(s):  
Hanzhang Zhu ◽  
Qiaoyu Liu ◽  
Junwei Tang ◽  
Yu Xie ◽  
Xiaoliang Xu ◽  
...  

Background & Aims: To investigate the expression and prognostic value of α1-ACT (Alpha1-antichymotrypsin) in patients with HCC (hepatocellular carcinoma) and identify the mechanism by which α1-ACT inhibits proliferation and promotes apoptosis of HCC. Methods: We first measured α1-ACT expression levels and determined their relationship with the clinicopathological characteristics and prognosis of patients with HCC.We then established stable HCC cell lines with both α1-ACT overexpression and knockdown and performed a functional analysis in vitro.We first examined the relationship between α1-ACT and the PTEN/PI3K/AKT/mTOR pathway using Western blotting. Then, we determined whether α1-ACT can directly bind to PTEN using co-immunoprecipitation. Finally, we measured α1-ACT expression to evaluate its correlation with the PI3K/AKT/mTOR pathway-related apoptosis proteins in a xenograft tumour mouse model using immunohistochemistry. Results: The α1-ACT expression level was significantly lower in the HCC tissues than in the paratumour tissues and was negatively positively correlated with the level of Ki67, AFP, the AJCC stage, tumour size and tumour invasion. The overexpression of α1-ACT can inhibit cell proliferation and increase cell apoptosis by activating PI3K/AKT/mTOR-mediated apoptosis via binding to PTEN and activating it in vitro. Additionally, the overexpression of α1-ACT can also increase the proportion of cells in the G0/G1 stage by increasing cyclin p21 expression and inhibiting the migration and invasion abilities of HCC cells by regulating MMP2 and MMP9. The xenotransplantation studies with nude mice also showed that overexpression of α1-ACT inhibited tumourigenesis and knockdown of α1-ACT had the opposite effect. Conclusions: Our study demonstrates that α1-ACT suppresses liver cancer development and metastasis via targeting the PTEN/PI3K/AKT/mTOR signalling pathway, which may be a potential target for therapeutic intervention in HCC.


2021 ◽  
Vol 12 (4) ◽  
Author(s):  
Xiaoguang Gu ◽  
Jianan Zhang ◽  
Yajuan Ran ◽  
Hena Pan ◽  
JinHong Jia ◽  
...  

AbstractCircular RNAs have been reported to play significant roles in regulating pathophysiological processes while also guiding clinical diagnosis and treatment of hepatocellular carcinoma (HCC). However, only a few circRNAs have been identified thus far. Herein, we investigated the role of a specific closed-loop structure of hsa_circ_101555 that was generated by back-splicing of the host gene casein kinase 1 gamma 1 (CSNK1G1) in the development and proliferation of HCC. We investigated the expression of Hsa_circ_101555 in HCC and normal tissues using bioinformatics. The expression level of hsa_circ_101555 was further detected by fluorescence in situ hybridization and qRT-PCR in ten HCC patients. Transwell, migration, WST-1 assays, and colony formation assays were used to evaluate the role of hsa_circ_101555 in HCC development and proliferation. The regulatory mechanisms of hsa_circ_101555 in miR-145-5p and CDCA3 were determined by dual luciferase reporter assay. A mouse xenograft model was also used to determine the effect of hsa_circ_101555 on HCC growth in vivo. hsa_circ_101555 showed greater stability than the linear RNA; while in vitro and in vivo results demonstrated that hsa_circ_101555 silencing significantly suppressed cell proliferation, migration, and invasion of HCC cells. Rescue experiments further demonstrated that suppression of miR-145-5p significantly attenuated the biological effects of hsa_circ_101555 knockdown in HCC cells. We also identified a putative oncogene CDCA3 as a potential miR-145-5p target. Thus, our results demonstrated that hsa_circ_101555 might function as a competing endogenous RNA of miR-145-5p to upregulate CDCA3 expression in HCC. These findings suggest that hsa_circ_101555 may be a potential therapeutic target for patients with HCC.


Author(s):  
He Zhu ◽  
Hongwei Zhang ◽  
Youliang Pei ◽  
Zhibin Liao ◽  
Furong Liu ◽  
...  

Abstract Background Hepatocellular carcinoma (HCC) is a common type of malignant human cancer with high morbidity and poor prognosis, causing numerous deaths per year worldwide. Growing evidence has been demonstrated that long non-coding RNAs (lncRNAs) are closely associated with hepatocarcinogenesis and metastasis. However, the roles, functions, and working mechanisms of most lncRNAs in HCC remain poorly defined. Methods Real-time quantitative polymerase chain reaction (qRT-PCR) was used to detect the expression level of CCDC183-AS1 in HCC tissues and cell lines. Cell proliferation, migration and invasion ability were evaluated by CCK-8 and transwell assay, respectively. Animal experiments were used to explore the role of CCDC183-AS1 and miR-589-5p in vivo. Bioinformatic analysis, dual-luciferase reporter assay and RNA immunoprecipitation (RIP) assay were performed to confirm the regulatory relationship between CCDC183-AS1, miR-589-5p and SKP1. Results Significantly upregulated expression of CCDC183-AS1 was observed in both HCC tissues and cell lines. HCC patients with higher expression of CCDC183-AS1 had a poorer overall survival rate. Functionally, overexpression of CCDC183-AS1 markedly promoted HCC cell proliferation, migration and invasion in vitro and tumor growth and metastasis in vivo, whereas the downregulation of CCDC183-AS1 exerted opposite effects. MiR-589-5p inhibitor counteracted the proliferation, migration and invasion inhibitory effects induced by CCDC183-AS1 silencing. Mechanistically, CCDC183-AS1 acted as a ceRNA through sponging miR-589-5p to offset its inhibitory effect on the target gene SKP1, then promoted the tumorigenesis of HCC. Conclusions CCDC183-AS1 functions as an oncogene to promote HCC progression through the CCDC183-AS1/miR-589-5p/SKP1 axis. Our study provided a novel potential therapeutic target for HCC patients.


2021 ◽  
Author(s):  
Can Chen ◽  
Yi Zong ◽  
Jiaojiao Tang ◽  
Ruisheng Ke ◽  
Lizhi Lv ◽  
...  

Background: The aim of this study was to investigate the role of miR-369-3p in hepatocellular carcinoma (HCC). Materials & methods: The expression levels of miR-369-3p were detected using the quantitative real-time reverse transcription-PCR analysis. The cell counting kit-8 and transwell assays were used to explore the effects of miR-369-3p on cell proliferation, migration and invasion of HCC cells. Results: The miR-369-3p expression was downregulated in HCC tissues and cell lines, in comparison to the normal controls, respectively. In vitro, overexpression of miR-369-3p in Hep 3B and Huh7 cells inhibited cell proliferation, migration and invasion. SOX4 was a direct target of miR-369-3p. Conclusion: Our results suggested that miR-369-3p may be a tumor suppressor in HCC by targeting SOX4.


2017 ◽  
Vol 8 (1) ◽  
Author(s):  
Kit San Yeung ◽  
Winnie Wan Yee Tso ◽  
Janice Jing Kun Ip ◽  
Christopher Chun Yu Mak ◽  
Gordon Ka Chun Leung ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document