scholarly journals Protein–DNA Interactions: The Story so Far and a New Method for Prediction

2003 ◽  
Vol 4 (4) ◽  
pp. 428-431 ◽  
Author(s):  
Susan Jones ◽  
Janet M. Thornton

This review describes methods for the prediction of DNA binding function, and specifically summarizes a new method using 3D structural templates. The new method features the HTH motif that is found in approximately one-third of DNAbinding protein families. A library of 3D structural templates of HTH motifs was derived from proteins in the PDB. Templates were scanned against complete protein structures and the optimal superposition of a template on a structure calculated. Significance thresholds in terms of a minimum root mean squared deviation (rmsd) of an optimal superposition, and a minimum motif accessible surface area (ASA), have been calculated. In this way, it is possible to scan the template library against proteins of unknown function to make predictions about DNA-binding functionality.

2013 ◽  
Vol 11 (01) ◽  
pp. 1340012 ◽  
Author(s):  
SEYED SHAHRIAR ARAB ◽  
MOHAMMADBAGHER PARSA GHARAMALEKI ◽  
ZAIDDODINE PASHANDI ◽  
REZVAN MOBASSERI

Computer assisted assignment of protein domains is considered as an important issue in structural bioinformatics. The exponential increase in the number of known three dimensional protein structures and the significant role of proteins in biology, medicine and pharmacology illustrate the necessity of a reliable method to automatically detect structural domains as protein units. For this aim, we have developed a program based on the accessible surface area (ASA) and the hydrogen bonds energy in protein backbone (HBE). PUTracer (Protein Unit Tracer) is built on the features of a fast top-down approach to cut a chain into its domains (contiguous domains) with minimal change in ASA as well as HBE. Performance of the program was assessed by a comprehensive benchmark dataset of 124 protein chains, which is based on agreement among experts (e.g. CATH, SCOP) and was expanded to include structures with different types of domain combinations. Equal number of domains and at least 90% agreement in critical boundary accuracy were considered as correct assignment conditions. PUTracer assigned domains correctly in 81.45% of protein chains. Although low critical boundary accuracy in 18.55% of protein chains leads to the incorrect assignments, adjusting the scales causes to improve the performance up to 89.5%. We discuss here the success or failure of adjusting the scales with provided evidences. Availability: PUTracer is available at http://bioinf.modares.ac.ir/software/PUTracer/


1992 ◽  
Vol 12 (7) ◽  
pp. 3273-3287 ◽  
Author(s):  
A J van Wijnen ◽  
F M van den Ent ◽  
J B Lian ◽  
J L Stein ◽  
G S Stein

Transcriptional regulation of vertebrate histone genes during the cell cycle is mediated by several factors interacting with a series of cis-acting elements located in the 5' regions of these genes. The arrangement of these promoter elements is different for each gene. However, most histone H4 gene promoters contain a highly conserved sequence immediately upstream of the TATA box (H4 subtype consensus sequence), and this region in the human H4 gene FO108 is involved in cell cycle control. The sequence-specific interaction of nuclear factor HiNF-D with this key proximal promoter element of the H4-FO108 gene is cell cycle regulated in normal diploid cells (J. Holthuis, T.A. Owen, A.J. van Wijnen, K.L. Wright, A. Ramsey-Ewing, M.B. Kennedy, R. Carter, S.C. Cosenza, K.J. Soprano, J.B. Lian, J.L. Stein, and G.S. Stein, Science, 247:1454-1457, 1990). Here, we show that this region of the H4-FO108 gene represents a composite protein-DNA interaction domain for several distinct sequence-specific DNA-binding activities, including HiNF-D, HiNF-M, and HiNF-P. Factor HiNF-P is similar to H4TF-2, a DNA-binding activity that is not cell cycle regulated and that interacts with the analogous region of the H4 gene H4.A (F. LaBella and N. Heintz, Mol. Cell. Biol. 11:5825-5831, 1991). The H4.A gene fails to interact with factors HiNF-M and HiNF-D owing to two independent sets of specific nucleotide variants, indicating differences in protein-DNA interactions between these H4 genes. Cytosine methylation of a highly conserved CpG dinucleotide interferes with binding of HiNF-P/H4TF-2 to both the H4-FO108 and H4.A promoters, but no effect is observed for either HiNF-M or HiNF-D binding to the H4-FO108 gene. Thus, strong evolutionary conservation of the H4 consensus sequence may be related to combinatorial interactions involving overlapping and interdigitated recognition nucleotides for several proteins, whose activities are regulated independently. Our results also suggest molecular complexity in the transcriptional regulation of distinct human H4 genes.


1992 ◽  
Vol 12 (7) ◽  
pp. 3273-3287
Author(s):  
A J van Wijnen ◽  
F M van den Ent ◽  
J B Lian ◽  
J L Stein ◽  
G S Stein

Transcriptional regulation of vertebrate histone genes during the cell cycle is mediated by several factors interacting with a series of cis-acting elements located in the 5' regions of these genes. The arrangement of these promoter elements is different for each gene. However, most histone H4 gene promoters contain a highly conserved sequence immediately upstream of the TATA box (H4 subtype consensus sequence), and this region in the human H4 gene FO108 is involved in cell cycle control. The sequence-specific interaction of nuclear factor HiNF-D with this key proximal promoter element of the H4-FO108 gene is cell cycle regulated in normal diploid cells (J. Holthuis, T.A. Owen, A.J. van Wijnen, K.L. Wright, A. Ramsey-Ewing, M.B. Kennedy, R. Carter, S.C. Cosenza, K.J. Soprano, J.B. Lian, J.L. Stein, and G.S. Stein, Science, 247:1454-1457, 1990). Here, we show that this region of the H4-FO108 gene represents a composite protein-DNA interaction domain for several distinct sequence-specific DNA-binding activities, including HiNF-D, HiNF-M, and HiNF-P. Factor HiNF-P is similar to H4TF-2, a DNA-binding activity that is not cell cycle regulated and that interacts with the analogous region of the H4 gene H4.A (F. LaBella and N. Heintz, Mol. Cell. Biol. 11:5825-5831, 1991). The H4.A gene fails to interact with factors HiNF-M and HiNF-D owing to two independent sets of specific nucleotide variants, indicating differences in protein-DNA interactions between these H4 genes. Cytosine methylation of a highly conserved CpG dinucleotide interferes with binding of HiNF-P/H4TF-2 to both the H4-FO108 and H4.A promoters, but no effect is observed for either HiNF-M or HiNF-D binding to the H4-FO108 gene. Thus, strong evolutionary conservation of the H4 consensus sequence may be related to combinatorial interactions involving overlapping and interdigitated recognition nucleotides for several proteins, whose activities are regulated independently. Our results also suggest molecular complexity in the transcriptional regulation of distinct human H4 genes.


2020 ◽  
Vol 48 (11) ◽  
pp. 6382-6402
Author(s):  
April L Mueller ◽  
Carles Corbi-Verge ◽  
David O Giganti ◽  
David M Ichikawa ◽  
Jeffrey M Spencer ◽  
...  

Abstract The Cys2His2 zinc finger is the most common DNA-binding domain expanding in metazoans since the fungi human split. A proposed catalyst for this expansion is an arms race to silence transposable elements yet it remains poorly understood how this domain is able to evolve the required specificities. Likewise, models of its DNA binding specificity remain error prone due to a lack of understanding of how adjacent fingers influence each other's binding specificity. Here, we use a synthetic approach to exhaustively investigate binding geometry, one of the dominant influences on adjacent finger function. By screening over 28 billion protein–DNA interactions in various geometric contexts we find the plasticity of the most common natural geometry enables more functional amino acid combinations across all targets. Further, residues that define this geometry are enriched in genomes where zinc fingers are prevalent and specificity transitions would be limited in alternative geometries. Finally, these results demonstrate an exhaustive synthetic screen can produce an accurate model of domain function while providing mechanistic insight that may have assisted in the domains expansion.


2016 ◽  
Vol 12 (12) ◽  
pp. 3600-3610 ◽  
Author(s):  
Matthias G. Beuerle ◽  
Neil P. Dufton ◽  
Anna M. Randi ◽  
Ian R. Gould

Molecular dynamics study elucidating the mechanistic background of the DNA-binding process and the sequence specificity of the transcription factor ERG. Along with the biological findings the capabilities of unbiased DNA-binding simulations in combination with various means of analysis in the field of protein DNA-interactions are shown.


Author(s):  
Tam D Vo ◽  
Amelia Lauren Schneider ◽  
W. David Wilson ◽  
Gregory Poon

Electrostatic protein/DNA interactions arise from the neutralization of the DNA phosphodiester backbone as well as coupled exchanges by charged protein residues as salt bridges or with mobile ions. Much focus...


2000 ◽  
Vol 20 (1) ◽  
pp. 1-11 ◽  
Author(s):  
Thomas B. Acton ◽  
Janet Mead ◽  
Andrew M. Steiner ◽  
Andrew K. Vershon

ABSTRACT MCM1 is an essential gene in the yeastSaccharomyces cerevisiae and is a member of the MADS-box family of transcriptional regulatory factors. To understand the nature of the protein-DNA interactions of this class of proteins, we have made a series of alanine substitutions in the DNA-binding domain of Mcm1 and examined the effects of these mutations in vivo and in vitro. Our results indicate which residues of Mcm1 are important for viability, transcriptional activation, and DNA binding and bending. Substitution of residues in Mcm1 which are highly conserved among the MADS-box proteins are lethal to the cell and abolish DNA binding in vitro. These positions have almost identical interactions with DNA in both the serum response factor-DNA and α2-Mcm1-DNA crystal structures, suggesting that these residues make up a conserved core of protein-DNA interactions responsible for docking MADS-box proteins to DNA. Substitution of residues which are not as well conserved among members of the MADS-box family play important roles in contributing to the specificity of DNA binding. These results suggest a general model of how MADS-box proteins recognize and bind DNA. We also provide evidence that the N-terminal extension of Mcm1 may have considerable conformational freedom, possibly to allow binding to different DNA sites. Finally, we have identified two mutants at positions which are critical for Mcm1-mediated DNA bending that have a slow-growth phenotype. This finding is consistent with our earlier results, indicating that DNA bending may have a role in Mcm1 function in the cell.


Sign in / Sign up

Export Citation Format

Share Document