ChemInform Abstract: EFFECT OF THE COOLING RATE ON THE COEFFICIENT OF TIN DISTRIBUTION BETWEEN THE LIQUID PHASE AND GERMANIUM-BASE SOLID SOLUTION

1976 ◽  
Vol 7 (5) ◽  
Author(s):  
G. M. KUZNETSOV ◽  
L. S. TSURGAN ◽  
A. A. PEDOS ◽  
T. N. SELIKHOVA ◽  
V. A. ROTENBERG
1986 ◽  
Vol 47 (C1) ◽  
pp. C1-441-C1-445
Author(s):  
E. KOSTIĆ ◽  
S. J. KISS ◽  
D. CEROVIĆ

2021 ◽  
Vol 2 (1) ◽  
pp. 39-48
Author(s):  
Nguyen H. H. Phuc ◽  
Takaki Maeda ◽  
Tokoharu Yamamoto ◽  
Hiroyuki Muto ◽  
Atsunori Matsuda

A solid solution of a 100Li3PS4·xLi3PO4 solid electrolyte was easily prepared by liquid-phase synthesis. Instead of the conventional solid-state synthesis methods, ethyl propionate was used as the reaction medium. The initial stage of the reaction among Li2S, P2S5 and Li3PO4 was proved by ultraviolet-visible spectroscopy. The powder X-ray diffraction (XRD) results showed that the solid solution was formed up to x = 6. At x = 20, XRD peaks of Li3PO4 were detected in the prepared sample after heat treatment at 170 °C. However, the samples obtained at room temperature showed no evidence of Li3PO4 remaining for x = 20. Solid phosphorus-31 magic angle spinning nuclear magnetic resonance spectroscopy results proved the formation of a POS33− unit in the sample with x = 6. Improvements of ionic conductivity at room temperature and activation energy were obtained with the formation of the solid solution. The sample with x = 6 exhibited a better stability against Li metal than that with x = 0. The all-solid-state half-cell employing the sample with x = 6 at the positive electrode exhibited a better charge–discharge capacity than that employing the sample with x = 0.


2016 ◽  
Vol 841 ◽  
pp. 21-28
Author(s):  
Petrică Corabieru ◽  
Stefan Velicu ◽  
Anişoara Corabieru ◽  
Dan Dragos Vasilescu ◽  
Ionel Păunescu

The novelty technology lies in the fact that the hardening of the surface layers is carried out both in liquid phase and in the solid state. Technology comprises three main stages with 12 technological phases.Experimentation highlights the viability of the technological procedure. The results of tests and verifications are the basis of the analysis of combined machined parts behavior in conditions similar to the operating conditions and of the analysis of the dependence between operation behavior and durability. Analysis of the results revealed the fact that failure to technological parameters: casting temperature; hold time at high temperatures; cooling rate after microalloying in liquid phase, gives rise to possible faults of the combined treated parts.


1981 ◽  
Vol 7 ◽  
Author(s):  
G. Battaglin ◽  
A. Carnera ◽  
G. Della Mea ◽  
P. Mazzoldi ◽  
Animesh K. Jain ◽  
...  

ABSTRACTWe present a comparative study (by 1.8 MeV 4He+ ion channeling) of virgin, self and Eu implanted single crystals of nickel, under irradiation with single ruby laser pulses. The as implanted Eu is nearly non-substitutional and remains so, even after laser treatment. The comparative defect dechanneling behaviour provides explicit evidence of defect-impurity interaction which may be suppressing the formation of an expected metastable solid solution in the Eu-Ni system, which possesses miscibility in the liquid phase. A clear surface Eu peak appears at 2.1 J/cm2.


2020 ◽  
Vol 6 (9) ◽  
pp. 10-17
Author(s):  
A. Razzakov ◽  
A. Matnazarov ◽  
M. Latipova ◽  
A. Japakov

Abstract. Single-crystal films of a graded-gap solid solution Si1-xGex (0 <x <1) was grown on Si substrates from limited tin, gallium solution-melt. Accordingly, liquid phase epitaxy method was applied in the process. The formation of dislocations, grown under various technological conditions, at the substrate-film interface along the growth direction of the Si1-xGex solid solution was studied. Optimal technological growth modes for obtaining crystalline perfect epitaxial layers and structures are given.


2013 ◽  
Vol 813 ◽  
pp. 364-371 ◽  
Author(s):  
Qiong Zhu Huang ◽  
Gui Min Lu ◽  
Jian Guo Yu

Effect of LiCl·H2O on sintering properties of MgO prepared from natural brine from Qarhan Salt Lake, crystalline bischofite and MgCl2·6H2O(AR) was studied. The results showed that LiCl·H2O of addition exceeded 1 wt% had promoting effect on sintering of magnesia prepared from MgCl2·6H2O(AR). While 1.5 wt% LiCl·H2O was added, the bulk density of magnesia was 3.40 g/cm3, and the relative density was 95.0%. With 0.5 wt% LiCl·H2O, the bulk densities of magnesia prepared from crystalline bischofite and brine were 3.04 and 3.10 g/cm3, and the relative densities increased by 8.4% and 14.8%, respectively. The main mechanism for promoting MgO sintering with LiCl·H2O was that Li2O produced by hydrolysis solubilized in MgO to form solid solutions and oxygen vacancies which were favorable to sintering. The main reasons for promoting sintering of brine magnesia with LiCl·H2O were solid solution and liquid phase sintering, while the main reason was solid solution for magnesia from crystalline bischofite and MgCl2·6H2O(AR).


2014 ◽  
Vol 33 (6) ◽  
pp. 525-529 ◽  
Author(s):  
X.Y. Gu ◽  
Z.Z. Duan ◽  
X.P. Gu ◽  
D.Q. Sun

AbstractIn the present study microstructural evolution in transient liquid phase (TLP) bonded Ti3Al-Nb alloy joints using a pure copper as interlayer was investigated. TLP bonded Ti3Al-Nb alloy joints composed of intermetallic compound layers were produced. Microstructural evolution of joints depended on both bonding time and bonding temperature. With increasing bonding time and bonding temperature, the joint width increased and amount of compounds in the joint decreased. The joint microstructure at 1173 K × 1 min mainly consisted of Ti (solid solution) + Ti2Cu + TiCu + Ti3Cu4 + Ti2Cu3 + TiCu4 + Cu (solid solution) phase and it changed to Ti (solid solution) + Ti2Cu + TiCu at 1223 K × 60 min. Compounds formed on cooling from the bonding temperature by liquid phase were eliminated from the joint at 1223 K × 60 min due to isothermal solidification of liquid phase. The increase of the width of joint is attributed to the composition difference between the isothermal solidification production and its adjacent base material.


Sign in / Sign up

Export Citation Format

Share Document