ChemInform Abstract: Catalytic Hydrolysis of Acrylonitrile to Acrylamide under Mild Conditions.

ChemInform ◽  
1990 ◽  
Vol 21 (34) ◽  
Author(s):  
J. CHIN ◽  
J. H. KIM
2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Yasar Karatas ◽  
Esra Kuyuldar ◽  
Hilal Acidereli ◽  
Mehmet Gulcan ◽  
Fatih Sen

AbstractHerein, we report a facile method for the preparation of polypyrrole-multi walled carbon nanotube hybrid material including Pt nanoparticles (Pt@PPy-MWCNT NPs) and the use in methylamine borane (MeAB) for hydrolysis reaction at mild conditions. The prepared catalyst of Pt@PPy-MWCNT NPs was characterized by some advanced analytical methods. The catalytic experiments showed the Pt@PPy-MWCNT NPs can catalyze MeAB in aquatic solution with high catalytical performance at mild conditions. The reaction rate of catalytic hydrolysis with Pt@PPy-MWCNT NPs was found to be -d[CH3NH2BH3]/dt = + d[H2]/3dt = kobs[Pt@PPy-MWCNT]1.19 [MeAB]0.88. The TOF value for the hydrolysis of MeAB catalyzed with Pt@PPy-MWCNT NPs was detected to be 10234.2 1/h (170.57 1/min) which is very high compared with TOF values found for other catalysts. Enthalpy, entropy and activation energy for the hydrolysis of MeAB were calculated to be 31.57 kJ mol−1, −119.97 J mol−1 K and 34.27 kJ mol−1, respectively.


2020 ◽  
Vol 204 ◽  
pp. 106407 ◽  
Author(s):  
Shengxin An ◽  
Wenzhi Li ◽  
Fengyang Xue ◽  
Xu Li ◽  
Ying Xia ◽  
...  

1996 ◽  
Vol 27 (1-2) ◽  
pp. 167-173 ◽  
Author(s):  
Zhaoqi Zhan ◽  
Martin Müllner ◽  
Johannes A. Lercher

Langmuir ◽  
2003 ◽  
Vol 19 (6) ◽  
pp. 2188-2192 ◽  
Author(s):  
Steven T. Frey ◽  
Benjamin M. Hutchins ◽  
Brian J. Anderson ◽  
Teresa K. Schreiber ◽  
Michael E. Hagerman

2013 ◽  
Vol 726-731 ◽  
pp. 535-538
Author(s):  
Tian Cheng Liu ◽  
Yu Jiao Guo ◽  
Ping Ning ◽  
Guang Yang Tang ◽  
Ming Long Yuan

Catalytic hydrolysis decomposition of dichlorodifluoromethane (CCl2F2) in the presence of water vapor and oxygen was studied over solid acid MoO3/ZrO2 using a fixed-bed reactor. The CCl2F2 adsorption was multilayer chemical adsorption and its process was corresponding with Freundlich model. Its heat was from 56.3 to 73.2 KJ.mol-1, and it was exothermic reaction and chemical adsorption.


2017 ◽  
Vol 39 (4) ◽  
pp. 423 ◽  
Author(s):  
George Meredite Cunha de Castro ◽  
Norma Maria Barros Benevides ◽  
Maulori Curié Cabral ◽  
Rafael De Souza Miranda ◽  
Enéas Gomes Filho ◽  
...  

 The seaweeds are bio-resource rich in sulfated and neutral polysaccharides. The tropical seaweed species used in this study (Solieria filiformis), after dried, shows 65.8% (w/w) carbohydrate, 9.6% (w/w) protein, 1.7% (w/w) lipid, 7.0% (w/w) moisture and 15.9% (w/w) ash. The dried seaweed was easily hydrolyzed under mild conditions (0.5 M sulfuric acid, 20 min.), generating fermentable monosaccharides with a maximum hydrolysis efficiency of 63.21%. Galactose and glucose present in the hydrolyzed were simultaneously fermented by Saccharomyces cerevisiae when the yeast was acclimated to galactose and cultivated in broth containing only galactose. The kinetic parameters of the fermentation of the seaweed hydrolyzed were Y(P⁄S) = 0.48 ± 0.02 g.g−1, PP = 0.27 ± 0.04 g.L−1.h−1, h = 94.1%, representing a 41% increase in bioethanol productivity. Therefore, S. filiformis was a promising renewable resource of polysaccharides easily hydrolyzed, generating a broth rich in fermentable monosaccharides for ethanol production. 


Sign in / Sign up

Export Citation Format

Share Document