ChemInform Abstract: From Liquid-Phase Multicomponent Reactions to Solid-Phase Libraries

ChemInform ◽  
2010 ◽  
Vol 31 (24) ◽  
pp. no-no
Author(s):  
Ivar Ugi ◽  
Alexander Domling ◽  
Bernhard Gruber ◽  
Stefan Heck ◽  
Martin Heilingbrunner
Author(s):  
C.D. Humphrey ◽  
T.L. Cromeans ◽  
E.H. Cook ◽  
D.W. Bradley

There is a variety of methods available for the rapid detection and identification of viruses by electron microscopy as described in several reviews. The predominant techniques are classified as direct electron microscopy (DEM), immune electron microscopy (IEM), liquid phase immune electron microscopy (LPIEM) and solid phase immune electron microscopy (SPIEM). Each technique has inherent strengths and weaknesses. However, in recent years, the most progress for identifying viruses has been realized by the utilization of SPIEM.


Author(s):  
N. A. Bulychev

In this paper, the plasma discharge in a high-pressure fluid stream in order to produce gaseous hydrogen was studied. Methods and equipment have been developed for the excitation of a plasma discharge in a stream of liquid medium. The fluid flow under excessive pressure is directed to a hydrodynamic emitter located at the reactor inlet where a supersonic two-phase vapor-liquid flow under reduced pressure is formed in the liquid due to the pressure drop and decrease in the flow enthalpy. Electrodes are located in the reactor where an electric field is created using an external power source (the strength of the field exceeds the breakdown threshold of this two-phase medium) leading to theinitiation of a low-temperature glow quasi-stationary plasma discharge.A theoretical estimation of the parameters of this type of discharge has been carried out. It is shown that the lowtemperature plasma initiated under the flow conditions of a liquid-phase medium in the discharge gap between the electrodes can effectively decompose the hydrogen-containing molecules of organic compounds in a liquid with the formation of gaseous products where the content of hydrogen is more than 90%. In the process simulation, theoretical calculations of the voltage and discharge current were also made which are in good agreement with the experimental data. The reaction unit used in the experiments was of a volume of 50 ml and reaction capacity appeared to be about 1.5 liters of hydrogen per minute when using a mixture of oxygen-containing organic compounds as a raw material. During their decomposition in plasma, solid-phase products are also formed in insignificant amounts: carbon nanoparticles and oxide nanoparticles of discharge electrode materials.


Biomolecules ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1014
Author(s):  
Macy L. Sprunger ◽  
Meredith E. Jackrel

Aberrant protein folding underpins many neurodegenerative diseases as well as certain myopathies and cancers. Protein misfolding can be driven by the presence of distinctive prion and prion-like regions within certain proteins. These prion and prion-like regions have also been found to drive liquid-liquid phase separation. Liquid-liquid phase separation is thought to be an important physiological process, but one that is prone to malfunction. Thus, aberrant liquid-to-solid phase transitions may drive protein aggregation and fibrillization, which could give rise to pathological inclusions. Here, we review prions and prion-like proteins, their roles in phase separation and disease, as well as potential therapeutic approaches to counter aberrant phase transitions.


2000 ◽  
Vol 2000 ◽  
pp. 144-144
Author(s):  
A.J. Ayala-Burgos ◽  
F.D.DeB. Hovell ◽  
R.M. Godoy ◽  
Hamana S. Saidén ◽  
R. López ◽  
...  

Cattle in the tropics mostly depend on pastures. During dry periods the forage available is usually mature, constraining both intake and digestion. These constraints need to be understood, for intake and digestibility define productivity. Intake depends on the rumen space made available by fermentation and outflow. Markers such as PEG (liquid phase), and chromium mordanted fibre (solid phase) can be used to measure rumen volume and outflow, but have limitations. The objective of this experiment was to measure intake, digestibility, and rumen kinetics of cattle fed ad libitum forages with very different degradation characteristics, and also to compare rumen volumes measured with markers with those obtained by manual emptying.


1998 ◽  
Vol 22 ◽  
pp. 306-308
Author(s):  
M. D. Carro ◽  
E. L. Miller

The estimation of rumen microbial protein synthesis is one of the main points in the nitrogen (N)-rationing systems for ruminants, as microbial protein provides proportionately 0.4 to 0.9 of amino acids entering the small intestine in ruminants receiving conventional diets (Russell et al., 1992). Methods of estimating microbial protein synthesis rely on marker techniques in which a particular microbial constituent is related to the microbial N content. Marker : N values have generally been established in mixed bacteria isolated from the liquid fraction of rumen digesta and it has been assumed that the same relationship holds in the total population leaving the rumen (Merry and McAllan, 1983). However, several studies have demonstrated differences in composition between solid-associated (SAB) and fluid-associated bacteria in vivo (Legay-Carmier and Bauchart, 1989) and in vitro (Molina Alcaide et al, 1996), as well in marker : N values (Pérez et al., 1996). This problem could be more pronounced in the in vitro semi-continuous culture system RUSITEC, in which there are three well defined components (a free liquid phase, a liquid phase associated with the solid phase and a solid phase), each one having associated microbial populations.The objective of this experiment was to investigate the effect of using different bacterial isolates (BI) on the estimation of microbial production of four different diets in RUSITEC (Czerkawski and Breckenridge, 1977), using (15NH4)2 SO4 as microbial marker, and to assess what effects any differences would have on the comparison of microbial protein synthesis between diets.This study was conducted in conjunction with an in vitro experiment described by Carro and Miller (1997). Two 14-day incubation trials were carried out with the rumen simulation technique RUSITEC (Czerkawski and Breckenridge, 1977). The general incubation procedure was the one described by Czerkawski and Breckenridge (1977) and more details about the procedures of this experiment are given elsewhere (Carro and Miller, 1997).


2013 ◽  
Vol 45 (3) ◽  
pp. 261-271 ◽  
Author(s):  
B. Randjelovic ◽  
K. Shinagawa ◽  
Z.S. Nikolic

From many experiments with mixtures of small and large grains, it can be concluded that during liquid phase sintering, smaller grains partially dissolve and a solid phase precipitates on the larger grains and grain coarsening occurs. The growth rate can be controlled either by the solid-liquid phase boundary reaction or by diffusion through the liquid phase. The microstructure may change either by larger grains growing during the Ostwald ripening process or by shape accommodation. In this study, two-dimensional mathematical approach for simulation of grain coarsening by grain boundary migration based on a physical and corresponding numerical modeling of liquid phase sintering will be considered. A combined mathematical method of analyzing viscous deformation and solute diffusion in liquid bridge between two grains with different sizes will be proposed. The viscous FE method will be used for calculating meniscus of the liquid bridge, with the interfacial tensions taken into consideration. The FE method for diffusion will be also implemented by using the same mesh as the deformation analysis.


Author(s):  
Taolin Zhao ◽  
Shaokang Chen ◽  
Xingyue Gao ◽  
Yuxia Zhang

High-performance lithium–ion batteries (LIBs) are the main development direction of future energy storage devices. However, most LIBs still face a problem of high first irreversible capacity loss. Pre-lithiation technology can increase the content of active lithium source and compensate the loss of active lithium during the first cycle. Adding lithium supplement additive to the cathode provides an effective way to improve the electrochemical performance of LIBs. Here, Li2MoO3 has been investigated as a cathode additive in the full cells. In order to optimize its preparation, Li2MoO3 has been prepared by three different methods, including solid-phase method, liquid-phase method and ultrasonic method. Based on material characterization and electrochemical performance tests, Li2MoO3 material prepared by liquid-phase method shows the best lithium storage properties and chosen as a cathode additive in the LiNi[Formula: see text]Co[Formula: see text]Mn[Formula: see text]O2/SiO@C full cells. The addition of Li2MoO3 has successfully improved the electrochemical performance of the full cell. The first discharge specific capacity increases from 103.9 mAh g[Formula: see text] to 130.4 mAh g[Formula: see text]. In short, Li2MoO3 material is a promising cathode additive for LIBs.


Author(s):  
L. K. Doraiswamy

The first three chapters of this part dealt with two-phase reactions. Although catalysts are not generally present in these systems, they can be used in dissolved form in the liquid phase. This, however, does not increase the number of phases. On the other hand, there are innumerable instances of gas-liquid reactions in which the catalyst is present in solid form. A popular example of this is the slurry reactor so extensively employed in reactions such as hydrogenation and oxidation. There are also situations where the solid is a reactant or where a phasetransfer catalyst is immobilized on a solid support that gives rise to a third phase. A broad classification of three-phase reactions and reactors is presented in Table 17.1 (not all of which are considered here). This is not a complete classification, but it includes most of the important (and potentially important) types of reactions and reactors. The thrust of this chapter is on reactions and reactors involving a gas phase, a liquid phase, and a solid phase which can be either a catalyst (but not a phasetransfer catalyst) or a reactant, with greater emphasis on the former. The book by Ramachandran and Chaudhari (1983) on three-phase catalytic reactions is particularly valuable. Other books and reviews include those of Shah (1979), Chaudhari and Ramachandran (1980), Villermaux (1981), Shah et al. (1982), Hofmann (1983), Crine and L’Homme (1983), Doraiswamy and Sharma (1984), Tarmy et al. (1984), Shah and Deckwer (1985), Chaudhari and Shah (1986), Kohler (1986), Chaudhari et al. (1986), Hanika and Stanek (1986), Joshi et al. (1988), Concordia (1990), Mills et al. (1992), Beenackers and Van Swaaij (1993), and Mills and Chaudhari (1997). Doraiswamy and Sharma (1984) also present a discussion of gas-liquid-solid noncatalytic reactions in which the solid is a reactant. In Chapter 7 we saw how Langmuir-Hinshelwood-Hougen-Watson (LHHW) models are normally used to describe the kinetics of gas-solid (catalytic) or liquid-solid (catalytic) reactions, and in Chapters 14 to 16 we saw how mass transfer between gas and liquid phases can significantly alter the rates and regimes of these two-phase reactions.


Weed Science ◽  
1989 ◽  
Vol 37 (5) ◽  
pp. 665-669 ◽  
Author(s):  
Albert E. Smith

Research was conducted to determine the potential for allelopathy to occur in pastures infested with bitter sneezeweed. Aqueous extracts of bitter sneezeweed leaves reduced alfalfa and Italian ryegrass seedling growth as much as 50% at concentrations of 0.5% (w/v). Leaf extracts were more phytotoxic than either stem or root extracts and seedling growth was reduced more than seed germination. Bitter sneezeweed tissue mixed in potting soil at concentrations as low as 0.3% w/w reduced alfalfa seedling numbers by 43%, plant height by 26%, and foliage dry matter production by 54% compared to plants cultured in soil without bitter sneezeweed leaf tissue. The potential concentration of bitter sneezeweed leaf material in soil in the pasture ecosystem was determined to be 0.5% w/v in the liquid phase and 0.2% w/w in the solid phase. Alfalfa seedling growth was reduced by 70% when germinating seed were placed under a bell jar with a potted mature bitter sneezeweed plant compared to control seedlings. A potential exists for bitter sneezeweed interference with developing alfalfa and Italian ryegrass seedlings following fall interseeding into pastures infested with bitter sneezeweed.


Sign in / Sign up

Export Citation Format

Share Document