Decoupled double‐loop FOIMC‐PD control architecture for double integral with dead time processes

Author(s):  
Deepak Kumar ◽  
Pulakraj Aryan ◽  
G. Lloyds Raja
2018 ◽  
Vol 8 (9) ◽  
pp. 1623 ◽  
Author(s):  
Ke Li ◽  
Yeming Zhang ◽  
Shaoliang Wei ◽  
Hongwei Yue

The friction interference in the pneumatic rotary actuator is the primary factor affecting the position accuracy of a pneumatic rotary actuator servo system. The paper proposes an evolutionary algorithm-based friction-forward compensation control architecture for improving position accuracy. Firstly, the basic equations of the valve-controlled actuator are derived and linearized in the middle position, and the transfer function of the system is further obtained. Then, the evolutionary algorithm-based friction feedforward compensation control architecture is structured, including that the evolutionary algorithm is used to optimize the controller coefficients and identify the friction parameters. Finally, the contrast experiments of four control strategies (the traditional PD control, the PD control with friction feedforward compensation without evolutionary algorithm tuning, the PD control with friction feedforward compensation based on the differential evolution algorithm, and the PD control with friction feedforward compensation based on the genetic algorithm) are carried out on the experimental platform. The experimental results reveal that the evolutionary algorithm-based friction feedforward compensation greatly improves the position tracking accuracy and positioning accuracy, and that the differential evolution-based case achieves better accuracy. Also, the system with the friction feedforward compensation still maintains high accuracy and strong stability in the case of load.


2017 ◽  
Vol 53 (1) ◽  
pp. 319-326 ◽  
Author(s):  
Otshepeng J. Moraka ◽  
Paul S. Barendse ◽  
Mohamed Azeem Khan

Author(s):  
JR Fryer ◽  
Z Huang ◽  
D Stirling ◽  
G. Webb

Platinum dispersed on γ-alumina is used as a reforming catalyst to convert linear hydrocarbons to cyclic aromatic products. To improve selectivity and lifetime of the catalyst, other elements are included, and we have studied the distributions of Pt/Re, and Pt/Sn, bimetallic systems on the support both before and after use in octane reforming. Often, one or both of the components are not resolvable by HREM or microanalysis as individual particles because of small size and lack of contrast on the alumina, and divergent beam microanalysis has been used to establish the presence and relationship between the two elements.In the majority of catalysts the platinum is in the form of small panicles, some of which are large enough to be resolvable in the microscope. The ABT002B microscope with Link windowless Pentafet detector, used in this work, was able to obtain a resolvable signal from particles of 2nm diameter upwards. When the beam was concentrated on to such a particle the signal was at a maximum, and as the beam diameter was diverged - at the same total beam intensity and dead time - the signal decreased as shown in Figure 1.


Author(s):  
John J. Friel

Committee E-04 on Metallography of the American Society for Testing and Materials (ASTM) conducted an interlaboratory round robin test program on quantitative energy dispersive spectroscopy (EDS). The test program was designed to produce data on which to base a precision and bias statement for quantitative analysis by EDS. Nine laboratories were sent specimens of two well characterized materials, a type 308 stainless steel, and a complex mechanical alloy from Inco Alloys International, Inconel® MA 6000. The stainless steel was chosen as an example of a straightforward analysis with no special problems. The mechanical alloy was selected because elements were present in a wide range of concentrations; K, L, and M lines were involved; and Ta was severely overlapped with W. The test aimed to establish limits of precision that could be routinely achieved by capable laboratories operating under real world conditions. The participants were first allowed to use their own best procedures, but later were instructed to repeat the analysis using specified conditions: 20 kV accelerating voltage, 200s live time, ∼25% dead time and ∼40° takeoff angle. They were also asked to run a standardless analysis.


1995 ◽  
Vol 34 (05) ◽  
pp. 475-488
Author(s):  
B. Seroussi ◽  
J. F. Boisvieux ◽  
V. Morice

Abstract:The monitoring and treatment of patients in a care unit is a complex task in which even the most experienced clinicians can make errors. A hemato-oncology department in which patients undergo chemotherapy asked for a computerized system able to provide intelligent and continuous support in this task. One issue in building such a system is the definition of a control architecture able to manage, in real time, a treatment plan containing prescriptions and protocols in which temporal constraints are expressed in various ways, that is, which supervises the treatment, including controlling the timely execution of prescriptions and suggesting modifications to the plan according to the patient’s evolving condition. The system to solve these issues, called SEPIA, has to manage the dynamic, processes involved in patient care. Its role is to generate, in real time, commands for the patient’s care (execution of tests, administration of drugs) from a plan, and to monitor the patient’s state so that it may propose actions updating the plan. The necessity of an explicit time representation is shown. We propose using a linear time structure towards the past, with precise and absolute dates, open towards the future, and with imprecise and relative dates. Temporal relative scales are introduced to facilitate knowledge representation and access.


2016 ◽  
Vol 136 (5) ◽  
pp. 676-682 ◽  
Author(s):  
Akihiro Ishimura ◽  
Masayoshi Nakamoto ◽  
Takuya Kinoshita ◽  
Toru Yamamoto

2020 ◽  
Vol 140 (3) ◽  
pp. 175-183
Author(s):  
Kengo Kawauchi ◽  
Hayato Higa ◽  
Hiroki Watanabe ◽  
Keisuke Kusaka ◽  
Jun-ichi Itoh

Sign in / Sign up

Export Citation Format

Share Document