Grading Woodland Soil Water Productivity and Soil Bioavailability in the Semi-Arid Loess Plateau of China

2011 ◽  
Vol 40 (2) ◽  
pp. 148-153 ◽  
Author(s):  
Guang-Can Zhang ◽  
Jiang-Bao Xia ◽  
Hong-Bo Shao ◽  
Shu-Yong Zhang
Agronomy ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 865 ◽  
Author(s):  
Anzhen Qin ◽  
Yanjie Fang ◽  
Dongfeng Ning ◽  
Zhandong Liu ◽  
Ben Zhao ◽  
...  

A sustainable management strategy of soil fertility and cropping system is critical to guaranteeing food security. However, little is known about the effects of soil amendment strategies on crop growth via regulating soil moisture and photosynthesis in a ridge and furrow cropping system. Here, field experiments were carried out in 2017 and 2018 in semi-arid areas of Loess Plateau, northwest China to investigate the effects of integrated use of ridge and furrow planting and manure amendment on grain yields of maize. Four treatments were designed: CK (flat planting with 100% chemical fertilizer), RFC (ridge and furrow planting with 100% chemical fertilizer), RFR (ridge and furrow planting with 100% control-released fertilizer), and RFM (ridge and furrow planting with 50% manure fertilizer + 50% N fertilizer). On average, RFM increased photosynthetic rates (Pn) by 74%, followed by RFR by 47%, and RFC by 26%, compared to CK. Also, stomatal conductance (Cd), transpiration rates (Tr), and intercellular CO2 concentration (Ci) were highest with RFM, followed by RFR and RFC. Averaged across the two years, RFM conserved 10% more soil water storage (SWS) than CK did at harvest, followed by RFR with an increment by 8%. However, RFC consumed more soil water than CK did, with its ETc 8% higher than CK. Consequently, spring maize treated with RFM suffered less drought stress, especially in 2017 when precipitation was insufficient. On average, grain yields and water use efficiency of RFM were increased by 18% and 27%, compared to CK. Structural equation modeling analysis showed that there existed significant positive correlation between SWS in top layers and grain yields, while SWS in deep layers had negative effects on grain yields. In conclusion, the incorporation of manure into ridge and furrow planting system can be an efficient agronomic practice to improve plant photosynthesis, optimize soil moisture, and boost grain yields in semi-arid areas of Loess Plateau, northwest China.


2021 ◽  
Vol 9 ◽  
Author(s):  
Lanfeng Bo ◽  
Zhanbin Li ◽  
Peng Li ◽  
Guoche Xu ◽  
Lie Xiao ◽  
...  

In the arid and semi-arid regions of the Loess Plateau, seasonal freezing and thawing influence soil water movement, and water movement directly influences vegetation growth. However, currently, research with regard to freezing and thawing processes under various vegetation types and the mechanism of soil water movement is lacking. Therefore, the present study explored soil water migration characteristics of two typical vegetation types [arbor land (AL) and shrub land (SL)] on the Loess Plateau during seasonal freezing and thawing processes using bare land (BL) as a control. We used field measured data for hourly soil temperature (ST) and soil water content (SWC) at a depth of 100 cm below the soil surface from November 2017 to March 2018. Freezing and thawing process was divided into three stages based on ST change (initial freezing period, stable freezing period, and thawing period). Compared with previous studies in this area, ST is lower than expected, and SWC migration characteristics are also different. The results revealed that: 1) the maximum freezing depth of AL and SL was 60 cm, which was 30 cm less than that of BL. The freezing date of each soil layer in BL was the earliest and average ST value was the lowest. BL had the highest degree of freezing. The freezing of all soil layers in AL occurred at a later date than that of SL. ST and the minimum soil freezing temperatures were higher than those of SL, and the capacity of AL to resist freezing was higher; 2) the SWCs in AL and BL at depths of 0–10 cm and 10–30 cm decreased, whereas SWCs of AL and BL at a depth of 60 cm increased by 152 and 146%, respectively. The SWCs of SL at soil depths of 0–10 cm, 10–30 cm, and 30–60 cm increased by 46.3, 78.4 and 205%, respectively. The amount and distribution of soil moisture in SL were optimum when compared to those of AL and BL. The results of the present study could provide a scientific basis for vegetation restoration in arid and semi-arid areas of the Loess Plateau.


2017 ◽  
Vol 107 ◽  
pp. 144-151 ◽  
Author(s):  
Wenming An ◽  
Zongshan Li ◽  
Shuai Wang ◽  
Xing Wu ◽  
Yihe Lu ◽  
...  

2016 ◽  
Author(s):  
Yonggang Yang ◽  
BoJie Fu

Abstract. Abstract. Soil water is an important driving force of the ecosystems, especially in the semi-arid hilly and gully region of northwestern Loess Plateau in China. The mechanism of soil water migration in the reconstruction and restoration of Loess Plateau is a key scientific problem that must be solved. Isotopic tracers can provide valuable information associated with complex hydrological problems, which is difficult to obtain by other methods. In this study, the oxygen and hydrogen isotopes are used as tracers to investigate the migration processes of soil water in the unsaturated zone in the Loess Plateau of arid region in China. Samples of precipitation, soil water, plant xylems and plant roots are collected and analysed. The conservative elements D and 18O are used as tracers to identify variable source and mixing processes. The mixing model is used to quantify the contribution of each end member and calculate mixing amounts.The results show that the isotopic composition of precipitation in the Anjiagou River basin is affected by isotopic fractionation due to evaporation. The isotopic compositions of soil waters are plotted between or near the local meteoric water lines, indicating that soil waters are recharged by precipitation. The soil water migration is dominated by piston-type flow in the study area, but rarely preferential flow.Water migration exhibited a transformation pathway from precipitation to soil water to plant water. δ18O and δD are enrichment in the shallow (<20 cm depth) soil water in most soil profiles due to evaporation. The isotopic composition of xylem water is close to that of soil water at the depth of 40%–60 cm. These values reflect soil water signatures associated with caraganakorshinshiikom uptake at the depth of 40%–60 cm. Soil water from the surface soil lay (20%–40 cm) contributed to 6 %–12 % of plant xylem water, while soil water at the depth of 40%–60 cm is the largest component of plant xylem water (range from 60 % to 66 %), soil water below 60 cm depth contributed 8 %–14 % to plant xylem water, and only 5 %–8 % is derived directly from precipitation.This study investigates the migration process of soil water, and identifies the source of plant water, and finally provides a scientific basis for identification of model structure and parameter. It can provide a scientific basis for ecological water demand, ecological restoration, management of water resources and the improvement of water benefit on each scale.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Dionei Lima Santos ◽  
Eugênio Ferreira Coelho ◽  
Rubens Alves de Oliveira ◽  
Roberto Filgueiras ◽  
Márcio da Silva Alves ◽  
...  

AbstractThis study aimed to evaluate in the papaya Tainung genotype, the effects of partial root-zone drying (PRD) technique on soil water regimes by using different frequencies of shifting irrigation-side of plant row and the effects of PRD technique on (1) crop agronomic performance, (2) titratable fruit acidity (TA), (3) total soluble solids (TSS), and TSS/TA ratio. Also, we analyze the spatial dynamic of papaya condition using normalized difference vegetation index (NDVI) from different satellite images. The study was conducted in the semi-arid region of Bahia (BA) and Minas Gerais (MG), Brazil. The combination of 100% (Full irrigation—FU), 50%, and 35% in the irrigation depth (WID) and frequencies of shifting plant-row side irrigation of 0 (Fixed Irrigation—FX), 7, 14, and 21 days were applied. Nine treatments were studied in BA and five in MG. The water available in the soil was reduced to 44% for frequencies of shifting plant-row side irrigation of 7 days, 50% for 14 days, and 85% for 21 days, compared to the soil water availability at field capacity. Partial water deficit in the soil through the PRD technique did not significantly reduce the total root length, effective root depth, and root effective horizontal distance of the papaya Tainung genotype. However, PRD treatments showed leaf abscission, which resulted in reduced leaf area and NDVI values, especially in the MG experiment. Papaya yield and fruit quality were not affected. However, except for PRD 21 35%, irrigation water depth reduced to 50 and 35% under PRD increased crop water productivity (CWP) in papaya plants. Thus, the PRD technique may save 35% of WID using the alternation of lateral shift irrigation of crop row every 7 days under water scarcity in semi-arid regions. The NDVI index was important to compare the papaya canopy vigor between the experimental areas studied. We also confirmed the potential of NDVI to monitor the vigor of papaya canopy, since we could notice the sensibility of NDVI to identify water stress in papaya in higher vapor pressure deficit (VPD) conditions occurred in October 2016 and January 2017 in Bom Jesus da Lapa-BA. Therefore, the PRD strategy can be a useful tool to save water in papaya cultivation under semi-arid conditions.


Sign in / Sign up

Export Citation Format

Share Document