scholarly journals Impact of soil water regimes and partial root-zone drying in field-grown papaya in semi-arid conditions

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Dionei Lima Santos ◽  
Eugênio Ferreira Coelho ◽  
Rubens Alves de Oliveira ◽  
Roberto Filgueiras ◽  
Márcio da Silva Alves ◽  
...  

AbstractThis study aimed to evaluate in the papaya Tainung genotype, the effects of partial root-zone drying (PRD) technique on soil water regimes by using different frequencies of shifting irrigation-side of plant row and the effects of PRD technique on (1) crop agronomic performance, (2) titratable fruit acidity (TA), (3) total soluble solids (TSS), and TSS/TA ratio. Also, we analyze the spatial dynamic of papaya condition using normalized difference vegetation index (NDVI) from different satellite images. The study was conducted in the semi-arid region of Bahia (BA) and Minas Gerais (MG), Brazil. The combination of 100% (Full irrigation—FU), 50%, and 35% in the irrigation depth (WID) and frequencies of shifting plant-row side irrigation of 0 (Fixed Irrigation—FX), 7, 14, and 21 days were applied. Nine treatments were studied in BA and five in MG. The water available in the soil was reduced to 44% for frequencies of shifting plant-row side irrigation of 7 days, 50% for 14 days, and 85% for 21 days, compared to the soil water availability at field capacity. Partial water deficit in the soil through the PRD technique did not significantly reduce the total root length, effective root depth, and root effective horizontal distance of the papaya Tainung genotype. However, PRD treatments showed leaf abscission, which resulted in reduced leaf area and NDVI values, especially in the MG experiment. Papaya yield and fruit quality were not affected. However, except for PRD 21 35%, irrigation water depth reduced to 50 and 35% under PRD increased crop water productivity (CWP) in papaya plants. Thus, the PRD technique may save 35% of WID using the alternation of lateral shift irrigation of crop row every 7 days under water scarcity in semi-arid regions. The NDVI index was important to compare the papaya canopy vigor between the experimental areas studied. We also confirmed the potential of NDVI to monitor the vigor of papaya canopy, since we could notice the sensibility of NDVI to identify water stress in papaya in higher vapor pressure deficit (VPD) conditions occurred in October 2016 and January 2017 in Bom Jesus da Lapa-BA. Therefore, the PRD strategy can be a useful tool to save water in papaya cultivation under semi-arid conditions.

2019 ◽  
Vol 41 (5) ◽  
Author(s):  
Ariane Castricini ◽  
Polyanna Mara de Oliveira ◽  
Maristella Martineli ◽  
Eugênio Ferreira Coelho ◽  
Maria Geralda Vilela Rodrigues

Resumo A significant portion of papaya production in the state of Minas Gerais originates from irrigated crops, and irrigation management using the partial root zone drying technique (PRD) is a fundamental alternative to reduce water waste. This study aimed to evaluate the quality of ‘Tainung 1’ papaya produced under PRD in semi-arid conditions of northern state of Minas Gerais. PRD treatments were composed of reduction of the calculated irrigation water (CIW) by 50%, applied on one side of the irrigation line, with alternation of 7, 14 and 21 days or without alternation and full irrigation, applying 100 % CIW in both lateral plant rows. Each experimental plot consisted of ten plants, and from six plants, fruits were harvested for evaluations at harvest point and when ripe. At harvest point, fruits had peel color, titratable acidity, ratio, pulp size and thickness similar to those produced without water deficit. Firmness, soluble solids content, fresh mass and central cavity diameter are distinct as a function of PRD condition. When ripe, only firmness varied according to PRD treatments. The quality of ‘Tainung 1’ papaya produced by partial root zone drying in semi-arid conditions was not compromised.


Water ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 425 ◽  
Author(s):  
Fairouz Slama ◽  
Nessrine Zemni ◽  
Fethi Bouksila ◽  
Roberto De Mascellis ◽  
Rachida Bouhlila

Water scarcity and quality degradation represent real threats to economic, social, and environmental development of arid and semi-arid regions. Drip irrigation associated to Deficit Irrigation (DI) has been investigated as a water saving technique. Yet its environmental impacts on soil and groundwater need to be gone into in depth especially when using brackish irrigation water. Soil water content and salinity were monitored in a fully drip irrigated potato plot with brackish water (4.45 dSm−1) in semi-arid Tunisia. The HYDRUS-1D model was used to investigate the effects of different irrigation regimes (deficit irrigation (T1R, 70% ETc), full irrigation (T2R, 100% ETc), and farmer’s schedule (T3R, 237% ETc) on root water uptake, root zone salinity, and solute return flows to groundwater. The simulated values of soil water content (θ) and electrical conductivity of soil solution (ECsw) were in good agreement with the observation values, as indicated by mean RMSE values (≤0.008 m3·m−3, and ≤0.28 dSm−1 for soil water content and ECsw respectively). The results of the different simulation treatments showed that relative yield accounted for 54%, 70%, and 85.5% of the potential maximal value when both water and solute stress were considered for deficit, full. and farmer’s irrigation, respectively. Root zone salinity was the lowest and root water uptake was the same with and without solute stress for the treatment corresponding to the farmer’s irrigation schedule (273% ETc). Solute return flows reaching the groundwater were the highest for T3R after two subsequent rainfall seasons. Beyond the water efficiency of DI with brackish water, long term studies need to focus on its impact on soil and groundwater salinization risks under changing climate conditions.


2009 ◽  
Vol 6 (5) ◽  
pp. 6425-6454
Author(s):  
H. Stephen ◽  
S. Ahmad ◽  
T. C. Piechota ◽  
C. Tang

Abstract. The Tropical Rainfall Measuring Mission (TRMM) carries aboard the Precipitation Radar (TRMMPR) that measures the backscatter (σ°) of the surface. σ° is sensitive to surface soil moisture and vegetation conditions. Due to sparse vegetation in arid and semi-arid regions, TRMMPR σ° primarily depends on the soil water content. In this study we relate TRMMPR σ° measurements to soil water content (ms) in Lower Colorado River Basin (LCRB). σ° dependence on ms is studied for different vegetation greenness values determined through Normalized Difference Vegetation Index (NDVI). A new model of σ° that couples incidence angle, ms, and NDVI is used to derive parameters and retrieve soil water content. The calibration and validation of this model are performed using simulated and measured ms data. Simulated ms is estimated using Variable Infiltration Capacity (VIC) model whereas measured ms is acquired from ground measuring stations in Walnut Gulch Experimental Watershed (WGEW). σ° model is calibrated using VIC and WGEW ms data during 1998 and the calibrated model is used to derive ms during later years. The temporal trends of derived ms are consistent with VIC and WGEW ms data with correlation coefficient (R) of 0.89 and 0.74, respectively. Derived ms is also consistent with the measured precipitation data with R=0.76. The gridded VIC data is used to calibrate the model at each grid point in LCRB and spatial maps of the model parameters are prepared. The model parameters are spatially coherent with the general regional topography in LCRB. TRMMPR σ° derived soil moisture maps during May (dry) and August (wet) 1999 are spatially similar to VIC estimates with correlation 0.67 and 0.76, respectively. This research provides new insights into Ku-band σ° dependence on soil water content in the arid regions.


2021 ◽  
pp. 195-211
Author(s):  
Sami Bhouri Khila ◽  
Boutheina Douh ◽  
Amel Mguidiche ◽  
Abdelhamid Boujelben

Proceedings ◽  
2020 ◽  
Vol 30 (1) ◽  
pp. 76
Author(s):  
Ioannis N. Daliakopoulos ◽  
Ioanna Panagea ◽  
Luca Brocca ◽  
Erik van den Elsen

Under arid conditions, where water availability is the limiting factor for plant survival, water balance models can be used to explain vegetation dynamics. [...]


CATENA ◽  
2020 ◽  
Vol 193 ◽  
pp. 104660 ◽  
Author(s):  
Ze Huang ◽  
Wen-Jin Yang ◽  
Yu Liu ◽  
Weibo Shen ◽  
Manuel López-Vicente ◽  
...  

2018 ◽  
Vol 10 (12) ◽  
pp. 1953 ◽  
Author(s):  
Safa Bousbih ◽  
Mehrez Zribi ◽  
Mohammad El Hajj ◽  
Nicolas Baghdadi ◽  
Zohra Lili-Chabaane ◽  
...  

This paper presents a technique for the mapping of soil moisture and irrigation, at the scale of agricultural fields, based on the synergistic interpretation of multi-temporal optical and Synthetic Aperture Radar (SAR) data (Sentinel-2 and Sentinel-1). The Kairouan plain, a semi-arid region in central Tunisia (North Africa), was selected as a test area for this study. Firstly, an algorithm for the direct inversion of the Water Cloud Model (WCM) was developed for the spatialization of the soil water content between 2015 and 2017. The soil moisture retrieved from these observations was first validated using ground measurements, recorded over 20 reference fields of cereal crops. A second method, based on the use of neural networks, was also used to confirm the initial validation. The results reported here show that the soil moisture products retrieved from remotely sensed data are accurate, with a Root Mean Square Error (RMSE) of less than 5% between the two moisture products. In addition, the analysis of soil moisture and Normalized Difference Vegetation Index (NDVI) products over cultivated fields, as a function of time, led to the classification of irrigated and rainfed areas on the Kairouan plain, and to the production of irrigation maps at the scale of individual fields. This classification is based on a decision tree approach, using a combination of various statistical indices of soil moisture and NDVI time series. The resulting irrigation maps were validated using reference fields within the study site. The best results were obtained with classifications based on soil moisture indices only, with an accuracy of 77%.


Sign in / Sign up

Export Citation Format

Share Document