Baseflow and Runoff Event Metal Concentrations, Partition and Its Relation with Physicochemical Variables in an Agroforestry Catchment

2013 ◽  
Vol 42 (4) ◽  
pp. 462-471 ◽  
Author(s):  
Laura Palleiro ◽  
María Luz Rodríguez-Blanco ◽  
María Mercedes Taboada-Castro ◽  
María Teresa Taboada-Castro
Author(s):  
Meredith Perkins ◽  
Julie Lowell ◽  
Christina Arnholt ◽  
Daniel MacDonald ◽  
Anita L. Kerkhof ◽  
...  

Geologija ◽  
2008 ◽  
Vol 50 (4) ◽  
pp. 237-245 ◽  
Author(s):  
Audronė Jankaitė ◽  
Pranas Baltrėnas ◽  
Agnė Kazlauskienė

1994 ◽  
Author(s):  
A.M. Moffett ◽  
Lawrence J. Poppe ◽  
Ralph S. Lewis

1993 ◽  
Vol 28 (1) ◽  
pp. 83-110 ◽  
Author(s):  
Richard E. Farrell ◽  
Jae E. Yang ◽  
P. Ming Huang ◽  
Wen K. Liaw

Abstract Porewater samples from the upper Qu’Appelle River basin in Saskatchewan, Canada, were analyzed to obtain metal, inorganic ligand and amino add profiles. These data were used to compute the aqueous speciation of the metals in each porewater using the computer program GEOCHEM-PC. The porewaters were classified as slightly to moderately saline. Metal concentrations reflected both the geology of the drainage basin and the impact of anthropogenic activities. Whereas K and Na were present almost entirely as the free aquo ions, carbonate equilibria dominated the speciation of Ca. Mg and Mn (the predominant metal ligand species were of the type MCO3 (s). MCO30. and MHCO3+). Trace metal concentrations were generally within the ranges reported for non-polluted freshwater systems. Whereas the speciation of the trace metals Cr(III) and Co(II) was dominated by carbonate equilibria, Hg(II)-, Zn(II)- and Fe(II)-speciation was dominated by hydroxy-metal complexes of the type M(OH)+ and M(OH)2°. The speciation of Fe(III) was dominated by Fe(OH)3 (s). In porewaters with high chloride concentrations (> 2 mM), however, significant amounts of Hg(II) were bound as HgCl20 and HgClOH0. The aqueous speciation of Al was dominated by Al(OH)4− and Al2Si2O4(OH)6 (s). Total concentrations of dissolved free amino acids varied from 15.21 to 25.17 umole L−1. The most important metal scavenging amino acids were histidine (due to high stability constants for the metal-histidine complexes) and tryptophan (due to its relatively high concentration in the porewaters. i.e., 5.96 to 7.73 umole L−1). Secondary concentrations of various trace metal-amino add complexes were computed for all the porewaters, but metal-amino acid complexes dominated the speciation of Cu(II) in all the porewaters and Ni(II) in two of the porewaters.


1988 ◽  
Vol 20 (6-7) ◽  
pp. 39-48 ◽  
Author(s):  
David A. Wright

Copper and cadmium monitoring in Chesapeake Bay sediments indicates that metal contamination exists in nursery areas for striped bass (Moronesaxatilis), which has been in serious decline over the last 17 years. Whole water metal concentrations in one spawning river were within an order of magnitude of published acutely toxic concentrations. Larval striped bass were exposed in the laboratory to copper and cadmium concentrations which were acutely toxic over a 96h period (24 and 19 µg L−1, respectively), and to sub-lethal concentrations of these metals over a three week period. Larvae from acutely toxic metal treatments, sub-lethal metal concentrations and control tanks were analyzed for cadmium and copper and the frequency distribution of metal body burdens was compared with field data. The distribution of copper concentrations in laboratory-exposed larvae was completely within the range of field specimens, and there was considerable overlap in cadmium frequency distributions from laboratory and field larvae. These results together with other published data suggest that environmental metal concentrations in some spawning tributaries of the Chesapeake Bay may pose a threat to striped bass, and the suggestion is made that greater efforts should be made to link laboratory and field toxicological data.


1992 ◽  
Vol 26 (7-8) ◽  
pp. 1769-1778 ◽  
Author(s):  
S.-I. Lee ◽  
B. Koopman ◽  
E. P. Lincoln

Combined chemical flocculation and autoflotation were examined using pilot scale process with chitosan and alum as flocculants. Positive correlation was observed between dissolved oxygen concentration and rise rate. Rise rate depended entirely on the autoflotation parameters: mixing intensity, retention time, and flocculant contact time. Also, rise rate was influenced by the type of flocculant used. The maximum rise rate with alum was observed to be 70 m/h, whereas that with chitosan was approximately 420 m/h. The efficiency of the flocculation-autoflotation process was superior to that of the flocculation-sedimentation process.


Sign in / Sign up

Export Citation Format

Share Document