Geometric Clutch model version 3: The role of the inner and outer arm dyneins in the ciliary beat

2002 ◽  
Vol 52 (4) ◽  
pp. 242-254 ◽  
Author(s):  
Charles B. Lindemann
Keyword(s):  
2012 ◽  
Vol 25 (19) ◽  
pp. 6646-6665 ◽  
Author(s):  
John P. Dunne ◽  
Jasmin G. John ◽  
Alistair J. Adcroft ◽  
Stephen M. Griffies ◽  
Robert W. Hallberg ◽  
...  

Abstract The physical climate formulation and simulation characteristics of two new global coupled carbon–climate Earth System Models, ESM2M and ESM2G, are described. These models demonstrate similar climate fidelity as the Geophysical Fluid Dynamics Laboratory’s previous Climate Model version 2.1 (CM2.1) while incorporating explicit and consistent carbon dynamics. The two models differ exclusively in the physical ocean component; ESM2M uses Modular Ocean Model version 4p1 with vertical pressure layers while ESM2G uses Generalized Ocean Layer Dynamics with a bulk mixed layer and interior isopycnal layers. Differences in the ocean mean state include the thermocline depth being relatively deep in ESM2M and relatively shallow in ESM2G compared to observations. The crucial role of ocean dynamics on climate variability is highlighted in El Niño–Southern Oscillation being overly strong in ESM2M and overly weak in ESM2G relative to observations. Thus, while ESM2G might better represent climate changes relating to total heat content variability given its lack of long-term drift, gyre circulation, and ventilation in the North Pacific, tropical Atlantic, and Indian Oceans, and depth structure in the overturning and abyssal flows, ESM2M might better represent climate changes relating to surface circulation given its superior surface temperature, salinity, and height patterns, tropical Pacific circulation and variability, and Southern Ocean dynamics. The overall assessment is that neither model is fundamentally superior to the other, and that both models achieve sufficient fidelity to allow meaningful climate and earth system modeling applications. This affords the ability to assess the role of ocean configuration on earth system interactions in the context of two state-of-the-art coupled carbon–climate models.


2002 ◽  
Vol 112 (3) ◽  
pp. 570-573 ◽  
Author(s):  
Wilbert M. Boek ◽  
Kees Graamans ◽  
Hanny Natzijl ◽  
Peter P. van Rijk ◽  
Egbert H. Huizing

1998 ◽  
Vol 275 (3) ◽  
pp. C790-C797 ◽  
Author(s):  
Alex Braiman ◽  
Orna Zagoory ◽  
Zvi Priel

The intent of this work was to evaluate the role of cAMP in regulation of ciliary activity in frog mucociliary epithelium and to examine the possibility of cross talk between the cAMP- and Ca2+-dependent pathways in that regulation. Forskolin and dibutyryl cAMP induced strong transient intracellular Ca2+ concentration ([Ca2+]i) elevation and strong ciliary beat frequency enhancement with prolonged stabilization at an elevated plateau. The response was not affected by reduction of extracellular Ca2+concentration. The elevation in [Ca2+]iwas canceled by pretreatment with 1,2-bis(2-aminophenoxy)ethane- N, N, N′, N′-tetraacetic acid-AM, thapsigargin, and a phospholipase C inhibitor, U-73122. Under those experimental conditions, forskolin raised the beat frequency to a moderately elevated plateau, whereas the initial strong rise in frequency was completely abolished. All effects were canceled by H-89, a selective protein kinase A (PKA) inhibitor. The results suggest a dual role for PKA in ciliary regulation. PKA releases Ca2+ from intracellular stores, strongly activating ciliary beating, and, concurrently, produces moderate prolonged enhancement of the beat frequency by a Ca2+-independent mechanism.


2013 ◽  
Vol 118 (10) ◽  
pp. 4657-4669 ◽  
Author(s):  
Po-Lun Ma ◽  
Philip J. Rasch ◽  
Hailong Wang ◽  
Kai Zhang ◽  
Richard C. Easter ◽  
...  

1995 ◽  
Vol 268 (6) ◽  
pp. L1021-L1028 ◽  
Author(s):  
C. A. Geary ◽  
C. W. Davis ◽  
A. M. Paradiso ◽  
R. C. Boucher

Ciliated airway epithelial cells contribute to mucociliary transport systems via ciliary beating and electrolyte transport mechanisms. Both of these activities are regulated by agonists acting through intracellular calcium- and adenosine 3',5'-cyclic monophosphate (cAMP)-dependent processes (5, 15, 18, 27). This study examines the role of guanosine 3',5'-cyclic monophosphate (cGMP) in the regulation of both ciliary beat frequency (CBF) and electrolyte transport in human airway epithelia (HAE). In a previous report, cGMP production in HAE was observed after stimulation with either C-type natriuretic peptide (CNP) or sodium nitroprusside (SNP) (6). In this study, CNP was found to increase CBF by 30 +/- 6.9%, and this effect was mimicked by the cGMP analogue, 8-bromoguanosine 3',5'-cyclic monophosphate (8-BrcGMP), but not by sodium nitroprusside. CNP-induced increases in CBF do not appear to be mediated by changes in either intracellular calcium or cAMP levels. Using modified Ussing chambers, we also investigated CNP's potential modulation of sodium and chloride transport rates. Neither CNP, nor SNP, nor 8-BrcGMP altered active ion transport rates. We conclude that CNP regulates ciliary beat via cGMP-dependent mechanisms, whereas no effect of CNP or cGMP on ion transport was detected.


1998 ◽  
Vol 275 (4) ◽  
pp. L827-L835 ◽  
Author(s):  
T. A. Wyatt ◽  
J. R. Spurzem ◽  
K. May ◽  
J. H. Sisson

Ciliary beating is required for the maintenance of lung mucociliary transport. We investigated the role of cyclic nucleotide-dependent protein kinases in stimulating ciliary beat frequency (CBF) in bovine bronchial epithelial cells (BBECs). cAMP-dependent protein kinase (PKA) activity and cGMP-dependent protein kinase (PKG) activity were distinguished after DEAE-Sephacel chromatography of BBEC extracts. cAMP levels and PKA activity are increased in BBECs stimulated with 0.01–1 mM isoproterenol, with a corresponding increase in CBF. cGMP levels and PKG activity are increased in BBECs stimulated with 0.1–10 μM sodium nitroprusside, with a corresponding increase in CBF. Direct protein kinase-activating analogs of cAMP and cGMP (dibutyryl cAMP and 8-bromo-cGMP, respectively) also activate their specific kinases and stimulate CBF. Preincubation of BBECs with inhibitors of PKA or PKG [KT-5720 or Rp-8-( p-chlorophenylthio)-guanosine 3′,5′-cyclic monophosphothioate] results in the inhibition of specific kinase activity as well as in the inhibition of CBF. These studies suggest that the activation of either PKA or PKG can lead to the stimulation of CBF in bovine airway epithelium.


2016 ◽  
Vol 113 (21) ◽  
pp. 5791-5796 ◽  
Author(s):  
Sylvia C. Sullivan ◽  
Dongmin Lee ◽  
Lazaros Oreopoulos ◽  
Athanasios Nenes

Understanding how dynamical and aerosol inputs affect the temporal variability of hydrometeor formation in climate models will help to explain sources of model diversity in cloud forcing, to provide robust comparisons with data, and, ultimately, to reduce the uncertainty in estimates of the aerosol indirect effect. This variability attribution can be done at various spatial and temporal resolutions with metrics derived from online adjoint sensitivities of droplet and crystal number to relevant inputs. Such metrics are defined and calculated from simulations using the NASA Goddard Earth Observing System Model, Version 5 (GEOS-5) and the National Center for Atmospheric Research Community Atmosphere Model Version 5.1 (CAM5.1). Input updraft velocity fluctuations can explain as much as 48% of temporal variability in output ice crystal number and 61% in droplet number in GEOS-5 and up to 89% of temporal variability in output ice crystal number in CAM5.1. In both models, this vertical velocity attribution depends strongly on altitude. Despite its importance for hydrometeor formation, simulated vertical velocity distributions are rarely evaluated against observations due to the sparsity of relevant data. Coordinated effort by the atmospheric community to develop more consistent, observationally based updraft treatments will help to close this knowledge gap.


2009 ◽  
Vol 22 (16) ◽  
pp. 4299-4315 ◽  
Author(s):  
Xiaoliang Song ◽  
Guang Jun Zhang

Abstract The role of convection parameterization in the formation of double ITCZ and associated upper-ocean biases in the NCAR Community Climate System Model, version 3 (CCSM3) is investigated by comparing the simulations using the original and revised Zhang–McFarlane (ZM) convection schemes. Ten-year model climatologies show that the simulation with the original ZM scheme produces a typical double ITCZ bias, whereas all biases related to the spurious double ITCZ and overly strong cold tongue in precipitation, sea surface temperature (SST), wind stress, ocean thermocline, upper-ocean currents, temperature, and salinity are dramatically reduced when the revised ZM scheme is used. These results demonstrate that convection parameterization plays a critical role in the formation of double ITCZ bias in the CCSM3. To understand the physical mechanisms through which the modifications of the convection scheme in the atmospheric model alleviate the double ITCZ bias in the CCSM3, the authors investigate the impacts of convection schemes on the atmospheric forcing and feedback in the uncoupled Community Atmospheric Model, version 3 (CAM3). It is shown that the CAM3 simulation with the original ZM scheme also produces a signature of double ITCZ bias in precipitation, whereas the simulation with the revised ZM scheme does not. Diagnostic analyses have identified three factors on the atmospheric side (i.e., the sensitivity of convection to SST, the convection–shortwave flux–SST feedback, and the convection–wind–evaporation–SST feedback) that may contribute to the differences in the coupled simulations.


Sign in / Sign up

Export Citation Format

Share Document