Comparison of water flow capacity in leaves among sweet corn genotypes as basis for plant transpiration rate sensitivity to vapor pressure deficit

Crop Science ◽  
2022 ◽  
Author(s):  
Nahid Jafarikouhini ◽  
Thomas R. Sinclair ◽  
Marcio F Resende Jr
Forests ◽  
2020 ◽  
Vol 11 (8) ◽  
pp. 825
Author(s):  
Dan Zhao ◽  
Quanhuan Lei ◽  
Yajie Shi ◽  
Mengdi Wang ◽  
Sibo Chen ◽  
...  

Research Highlights: To demonstrate the effectiveness of configuration modes and tree types in regulating local microclimate. Background and Objectives: Urban trees play an essential role in reducing the city’s heat load. However, the influence of urban trees with different configurations on the urban thermal environment has not received enough attention. Herein we show how spatial arrangement and foliage longevity, deciduous versus evergreen, affect transpiration and the urban microclimate. Materials and Methods: We analyzed the differences between physiological parameters (transpiration rate, stomatal conductance) and meteorological parameters (air temperature, relative humidity, vapor pressure deficit) of 10 different species of urban trees (five evergreen and five deciduous tree species), each of which had been planted in three configuration modes in a park and the campus green space in Xi’an. By manipulating physiological parameters, crown morphology, and plant configurations, we explored how local urban microclimate could be altered. Results: (1) Microclimate regulation capacity: group planting (GP) > linear planting (LP) > individual planting (IP). (2) Deciduous trees (DT) regulated microclimate better than evergreen trees (ET). Significant differences between all planting configurations during 8 to 16 h were noted for evergreen trees whereas for deciduous trees, all measurement times were significantly different. (3) Transpiration characteristics: GP > LP > IP. The transpiration rate (E) and stomatal conductance (Gs) of GP were the highest. Total daily transpiration was ranked as group planting of deciduous (DGP) > linear planting of deciduous (DLP) > group planting of evergreen (EGP) > linear planting of evergreen (ELP) > isolated planting of deciduous (DIP) > isolated planting of evergreen (EIP). (4) The microclimate effects of different tree species and configuration modes were positively correlated with E, Gs, and three dimensional green quantity (3DGQ), but weakly correlated with vapor pressure deficit (VpdL). (5) A microclimate regulation capability model of urban trees was developed. E, Gs, and 3DGQ could explain 93% variation of cooling effect, while E, Gs, VpdL, and 3DGQ could explain 85% variation of humidifying effect. Conclusions: This study demonstrated that the urban heat island could be mitigated by selecting deciduous broadleaf tree species and planting them in groups.


2011 ◽  
Vol 2011 ◽  
pp. 1-7 ◽  
Author(s):  
Mura Jyostna Devi ◽  
Thomas R. Sinclair

Commercial peanut cultivars in the USA are often grown under soil and environmental conditions resulting in intermittent periods of water deficit. Two plant traits have been identified that result in conservative use of water and allow sustained growth during drought: (1) restricted transpiration rate under high atmospheric vapor pressure deficit (VPD) and (2) earlier closure of stomata in the soil-drying cycle resulting in decreased daily transpiration rate. The objective of this study was to investigate whether there was diversity in these two putative traits for drought resistance among nine US commercial peanut cultivars. When the response to VPD was measured at an average temperature of C, eight of the nine cultivars expressed a restricted transpiration rate at high VPD. However, at C none of the cultivars exhibited a restriction of transpiration rate at high VPD. No differences were found among the nine cultivars in their response to soil drying.


HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 501c-501
Author(s):  
Andrés A. Estrada-Luna ◽  
Jonathan N. Egilla ◽  
Fred T. Davies

The effect of mycorrhizal fungi on gas exchange of micropropagated guava plantlets (Psidium guajava L.) during acclimatization and plant establishment was determined. Guava plantlets (Psidium guajava L. cv. `Media China') were asexually propagated through tissue culture and acclimatized in a glasshouse for eighteen weeks. Half of the plantlets were inoculated with ZAC-19, which is a mixed isolate containing Glomus etunicatum and an unknown Glomus spp. Plantlets were fertilized with modified Long Ashton nutrient solution containing 11 (g P/ml. Gas exchange measurements included photosynthetic rate (A), stomatal conductance (gs), internal CO2 concentration (Ci), transpiration rate (E), water use efficiency (WUE), and vapor pressure deficit (VPD). Measurements were taken at 2, 4, 8 and 18 weeks after inoculation using a LI-6200 portable photosynthesis system (LI-COR Inc. Lincoln, Neb., USA). Two weeks after inoculation, noninoculated plantlets had greater A compared to mycorrhizal plantlets. However, 4 and 8 weeks after inoculation, mycorrhizal plantlets had greater A, gs, Ci and WUE. At the end of the experiment gas exchange was comparable between noninoculated and mycorrhizal plantlets.


Horticulturae ◽  
2021 ◽  
Vol 7 (6) ◽  
pp. 131
Author(s):  
Matteo Zucchini ◽  
Arash Khosravi ◽  
Veronica Giorgi ◽  
Adriano Mancini ◽  
Davide Neri

The growth of cherry fruit is generally described using a double sigmoid model, divided into four growth stages. Abiotic factors are considered to be significant components in modifying fruit growth, and among these, the vapor pressure deficit (VPD) is deemed the most effective. In this study, we investigated sweet cherry fruit growth through the continuous, hourly monitoring of fruit transversal diameter over two consecutive years (2019 and 2020), from the beginning of the third stage to maturation (forth stage). Extensometers were used in the field and VPD was calculated from weather data. The fruit growth pattern up to the end of the third stage demonstrated three critical steps during non-rainy days: shrinkage, stabilization and expansion. In the third stage of fruit growth, a partial clockwise hysteresis curve of circadian growth, as a response to VPD, appeared on random days. The pattern of fruit growth during rainy days was not distinctive, but the amount and duration of rain caused a consequent decrease in the VPD and indirectly boosted fruit growth. At the beginning of the fourth stage, the circadian growth changed and the daily transversal diameter vs VPD formed fully clockwise hysteresis curves for most of this stage. Our findings indicate that hysteresis can be employed to evaluate the initial phenological phase of fruit maturation, as a fully clockwise hysteresis curve was observable only in the fourth stage of fruit growth. There are additional opportunities for its use in the management of fruit production, such as in precision fruit farming.


2021 ◽  
Vol 11 (11) ◽  
pp. 4729
Author(s):  
Davide Amato ◽  
Giuseppe Montanaro ◽  
Filippo Vurro ◽  
Nicola Coppedé ◽  
Nunzio Briglia ◽  
...  

Research on organic electrochemical transistor (OECT) based sensors to monitor in vivo plant traits such as xylem sap concentration is attracting attention for their potential application in precision agriculture. Fabrication and electronic aspects of OECT have been the subject of extensive research while its characterization within the plant water relation context deserves further efforts. This study tested the hypothesis that the response (R) of an OECT (bioristor) implanted in the trunk of olive trees is inversely proportional to the water flux density flowing through the plant (Jw). This study also examined the influence on R of vapor pressure deficit (VPD) as coupled/uncoupled with light. R was hourly recorded in potted olive trees for a 10-day period concomitantly with Jw (weight loss method). A subgroup of trees was bagged in order to reduce VPD and in turn Jw, and other trees were located in a walk-in chamber where VPD and light were independently managed. R was tightly sensitive to diurnal oscillation of Jw and at negligible values of Jw (late afternoon and night) R increased. The bioristor was not sensitive to the VPD per se unless a light source was coupled to trigger Jw. This study preliminarily examined the suitability of bioristor to estimate the mean daily nutrients accumulation rate (Ca, K) in leaves comparing chemical and sensor-based procedures showing a good agreement between them opening new perspective towards the application of OECT sensor in precision agricultural cropping systems.


Sign in / Sign up

Export Citation Format

Share Document