One‐Pot Mechanochemical Synthesis of Mono‐ and Bis‐Indolylquinones via Solvent‐Free Multiple Bond‐Forming Processes

ChemSusChem ◽  
2021 ◽  
Author(s):  
Marta Piquero ◽  
Cristina Font ◽  
Natalia Gullón ◽  
Pilar López‐Alvarado ◽  
J. Carlos Menéndez
2018 ◽  
Vol 14 ◽  
pp. 2689-2697 ◽  
Author(s):  
Robby Vroemans ◽  
Yenthel Verhaegen ◽  
My Tran Thi Dieu ◽  
Wim Dehaen

A new metal-free one-pot three-component procedure towards fully substituted triazolochromenes has been developed, starting from commercially available materials. Salicylaldehydes and nitroalkenes were reacted under solvent-free conditions, followed by a 1,3-dipolar cycloaddition of the intermediate 3-nitro-2H-chromenes with organic azides in a one-pot two-step sequence. The triazolochromenes were formed with complete regioselectivity and new biologically relevant structures were synthesized via extension of the developed procedure and via postfunctionalization. The mechanochemical synthesis was carried out for several salicylaldehydes and gave a clear improvement in the yield of the corresponding triazolochromenes and consequently showed to be a viable alternative for solid salicylaldehydes.


Synthesis ◽  
2017 ◽  
Vol 50 (04) ◽  
pp. 742-752 ◽  
Author(s):  
Elisabeth Jäckel ◽  
Julia Kaufmann ◽  
Edgar Haak

Multiple bond-forming cascade transformations and one-pot procedures are valuable tools in organic synthesis and drug discovery. These atom-economical processes provide rapid access to natural product-like scaffolds from simple precursors. Herein, we report on ruthenium-catalyzed one-pot conversions of simple 1-alkenyl propargyl alcohols with cyclic 3-ketolactones and dienophiles. Thereby, structurally diverse fused polycycles and functionalized bicyclic structures are accessible from a common precursor with high selectivity. Some of the new drug-like molecules exhibit cytotoxic activity against KB cells.


Molecules ◽  
2021 ◽  
Vol 26 (11) ◽  
pp. 3148
Author(s):  
Martina Palomba ◽  
Italo Franco Coelho Dias ◽  
Ornelio Rosati ◽  
Francesca Marini

In recent years, vinyl selenones were rediscovered as useful building blocks for new synthetic transformations. This review will highlight these advances in the field of multiple-bond-forming reactions, one-pot synthesis of carbo- and heterocycles, enantioselective construction of densely functionalized molecules, and total synthesis of natural products.


2019 ◽  
Author(s):  
Miles Aukland ◽  
Mindaugas Šiaučiulis ◽  
Adam West ◽  
Gregory Perry ◽  
David Procter

<p>Aryl–aryl cross-coupling constitutes one of the most widely used procedures for the synthesis of high-value materials, ranging from pharmaceuticals to organic electronics and conducting polymers. The assembly of (hetero)biaryl scaffolds generally requires multiple steps; coupling partners must be functionalized before the key bond-forming event is considered. Thus, the development of selective C–H arylation processes in arenes, that side-step the need for prefunctionalized partners, is crucial for streamlining the construction of these key architectures. Here we report an expedient, one-pot assembly of (hetero)biaryl motifs using photocatalysis and two non-prefunctionalized arene partners. The approach is underpinned by the activation of a C–H bond in an arene coupling partner using the interrupted Pummerer reaction. A unique pairing of the organic photoredox catalyst and the intermediate dibenzothiophenium salts enables highly selective reduction in the presence of sensitive functionalities. The utility of the metal-free, one-pot strategy is exemplified by the synthesis of a bioactive natural product and the modification of complex molecules of societal importance.</p>


2019 ◽  
Vol 22 (2) ◽  
pp. 123-128
Author(s):  
Setareh Habibzadeh ◽  
Hassan Ghasemnejad-Bosra ◽  
Mina Haghdadi ◽  
Soheila Heydari-Parastar

Background: In this study, we developed a convenient methodology for the synthesis of coumarin linked to pyrazolines and pyrano [2,3-h] coumarins linked to 3-(1,5-diphenyl-4,5- dihydro-1H-pyrazol-3-yl)-chromen-2-one derivatives using Chlorosulfonic acid supported Piperidine-4-carboxylic acid (PPCA) functionalized Fe3O4 nanoparticles (Fe3O4-PPCA) catalyst. Materials and Methods:: Fe3O4-PPCA was investigated as an efficient and magnetically recoverable Nanocatalyst for the one-pot synthesis of substituted coumarins from the reaction of coumarin with a variety of aromatic aldehydes in high to excellent yield at room temperature under solvent-free conditions. The magnetic nanocatalyst can be easily recovered by applying an external magnet device and reused for at least 10 reaction runs without considerable loss of reactivity. Results and Conclusion: The advantages of this protocol are the use of commercially available materials, simple and an inexpensive procedure, easy separation, and an eco-friendly procedure, and it shows good reaction times, good to high yields, inexpensive and practicability procedure, and high efficiency.


2020 ◽  
Vol 23 (2) ◽  
pp. 157-167
Author(s):  
Zainab Ehsani-Nasab ◽  
Ali Ezabadi

Objective: A facile and efficient method for synthesis of 3, 4-dihydropyrimidin-2(1H)-ones via Biginelli reaction catalyzed by a novel dicationic Brönsted acidic ionic liquid, [(EtNH2)2SO][HSO4]2, has been successfully developed. Material and Method:: 3, 4-Dihydropyrimidin-2(1H)-ones were synthesized through one-pot condensation of aromatic aldehydes, ethyl acetoacetate, and urea under solvent-free conditions using [(EtNH2)2SO][HSO4]2 as a novel catalyst. The progress of the reaction was monitored by thin-layer chromatography (ethyl acetate / n-hexane = 1 / 5). The products have been characterized by IR, 1H NMR, 13C NMR, and also by their melting points. Results: In this research, a library of dihydropyrimidinone derivatives was synthesized via Biginelli reaction under solvent-free conditions at 120oC using [(EtNH2)2SO][HSO4]2 as a catalyst. Various aromatic aldehydes, as well as heteroaromatic aldehydes, were employed, affording good to high yields of the corresponding products and illustrating the substrate generality of the present method. In addition, the prepared dicationic Brönsted acidic ionic liquid can be easily recovered and reused. Conclusion: 1, 1’-Sulfinyldiethylammonium bis (hydrogen sulfate), as a novel dicationic ionic liquid, can act as a highly efficient catalyst for the synthesis of 3, 4-dihydropyrimidin-2(1H)-ones under solvent-free conditions.


2020 ◽  
Vol 17 (6) ◽  
pp. 438-442
Author(s):  
Xiaofang Ma ◽  
Shunxi Li ◽  
Samrat Devaramani ◽  
Guohu Zhao ◽  
Daqian Xu

The elimination of volatile organic solvents in organic synthesis is the most important goal in “Green” chemistry. We report a simple, efficient and facile method for the addition of progargyl bromide to carbonyl compounds using Mg metal as a mediator under solvent-free conditions which could regioselectively generate homopropargyl alcohols efficiently in good to excellent yields. The procedure has advantages such as short reaction time, operationally simple, excellent product yields, high regioselectivity and organic solvent-free.


2020 ◽  
Vol 17 (10) ◽  
pp. 772-778
Author(s):  
Abdulrhman Alsayari ◽  
Abdullatif Bin Muhsinah ◽  
Yahya I. Asiri ◽  
Jaber Abdullah Alshehri ◽  
Yahia N. Mabkhot ◽  
...  

The aim of this study was to synthesize and evaluate the biological activity of pyrazole derivatives, in particular, to perform a “greener” one-pot synthesis using a solvent-free method as an alternative strategy for synthesizing hydrazono/diazenyl-pyridine-pyrazole hybrid molecules with potential anticancer activity. Effective treatment for all types of cancers is still a long way in the future due to the severe adverse drug reactions and drug resistance associated with current drugs. Therefore, there is a pressing need to develop safer and more effective anticancer agents. In this context, some hybrid analogues containing the bioactive pharmacophores viz. pyrazole, pyridine, and diazo scaffolds were synthesized by one-pot method. Herein, we describe the expedient synthesis of pyrazoles by a onepot three-component condensation of ethyl acetoacetate/acetylacetone, isoniazid, and arenediazonium salts under solvent-free conditions, and the evaluation of their cytotoxicity using a sulforhodamine B assay on three cancer cell lines. Molecular docking studies employing tyrosine kinase were also carried out to evaluate the binding mode of the pyrazole derivatives under study. 1-(4-Pyridinylcarbonyl)-3- methyl-4-(2-arylhydrazono)-2-pyrazolin-5-ones and [4-(2-aryldiazenyl)-3,5-dimethyl-1H-pyrazol-1- yl]-4-pyridinylmethanones, previously described, were prepared using an improved procedure. Among these ten products, 1-isonicotinoyl-3-methyl-4-[2-(4-nitrophenyl)hydrazono]-2-pyrazolin-5-one (1f) displayed promising anticancer activity against the MCF-7, HepG2 and HCT-116 cell lines, with an IC50 value in the range of 0.2-3.4 μM. In summary, our findings suggest that pyrazoles containing hydrazono/ diazenyl and pyridine pharmacophores constitute promising scaffolds for the development of new anticancer agents.


2020 ◽  
Vol 7 (1) ◽  
pp. 23-39 ◽  
Author(s):  
Kantharaju Kamanna ◽  
Santosh Y. Khatavi

Multi-Component Reactions (MCRs) have emerged as an excellent tool in organic chemistry for the synthesis of various bioactive molecules. Among these, one-pot MCRs are included, in which organic reactants react with domino in a single-step process. This has become an alternative platform for the organic chemists, because of their simple operation, less purification methods, no side product and faster reaction time. One of the important applications of the MCRs can be drawn in carbon- carbon (C-C) and carbon-heteroatom (C-X; X = N, O, S) bond formation, which is extensively used by the organic chemists to generate bioactive or useful material synthesis. Some of the key carbon- carbon bond forming reactions are Grignard, Wittig, Enolate alkylation, Aldol, Claisen condensation, Michael and more organic reactions. Alternatively, carbon-heteroatoms containing C-N, C-O, and C-S bond are also found more important and present in various heterocyclic compounds, which are of biological, pharmaceutical, and material interest. Thus, there is a clear scope for the discovery and development of cleaner reaction, faster reaction rate, atom economy and efficient one-pot synthesis for sustainable production of diverse and structurally complex organic molecules. Reactions that required hours to run completely in a conventional method can now be carried out within minutes. Thus, the application of microwave (MW) radiation in organic synthesis has become more promising considerable amount in resource-friendly and eco-friendly processes. The technique of microwaveassisted organic synthesis (MAOS) has successfully been employed in various material syntheses, such as transition metal-catalyzed cross-coupling, dipolar cycloaddition reaction, biomolecule synthesis, polymer formation, and the nanoparticle synthesis. The application of the microwave-technique in carbon-carbon and carbon-heteroatom bond formations via MCRs with major reported literature examples are discussed in this review.


2019 ◽  
Vol 15 ◽  
pp. 963-970 ◽  
Author(s):  
Sora Park ◽  
Jeung Gon Kim

Mechanochemical polymerization is a rapidly growing area and a number of polymeric materials can now be obtained through green mechanochemical synthesis. In addition to the general merits of mechanochemistry, such as being solvent-free and resulting in high conversions, we herein explore rate acceleration under ball-milling conditions while the conventional solution-state synthesis suffer from low reactivity. The solvent-free mechanochemical polymerization of trimethylene carbonate using the organocatalysts 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) and 1,5,7-triazabicyclo[4.4.0]dec-5-ene (TBD) are examined herein. The polymerizations under ball-milling conditions exhibited significant rate enhancements compared to polymerizations in solution. A number of milling parameters were evaluated for the ball-milling polymerization. Temperature increases due to ball collisions and exothermic energy output did not affect the polymerization rate significantly and the initial mixing speed was important for chain-length control. Liquid-assisted grinding was applied for the synthesis of high molecular weight polymers, but it failed to protect the polymer chain from mechanical degradation.


Sign in / Sign up

Export Citation Format

Share Document