Differentiation of HL-60 promyelocytic leukemia cells: Simultaneous determination of phagocytic activity and cell cycle distribution by flow cytometry

Cytometry ◽  
1986 ◽  
Vol 7 (2) ◽  
pp. 171-177 ◽  
Author(s):  
Owen C. Blair ◽  
Rocco Carbone ◽  
Alan C. Sartorelli
2003 ◽  
Vol 23 (4) ◽  
pp. 1460-1469 ◽  
Author(s):  
Hayk Hovhannisyan ◽  
Brian Cho ◽  
Partha Mitra ◽  
Martin Montecino ◽  
Gary S. Stein ◽  
...  

ABSTRACT During the shutdown of proliferation and onset of differentiation of HL-60 promyelocytic leukemia cells, expression of the cell cycle-dependent histone genes is downregulated at the level of transcription. To address the mechanism by which this regulation occurs, we examined the chromatin structure of the histone H4/n (FO108, H4FN) gene locus. Micrococcal nuclease, DNase I, and restriction enzymes show similar cleavage sites and levels of sensitivity at the H4/n locus in both proliferating and differentiated HL-60 cells. In contrast, differentiation-related activation of the cyclin-dependent kinase inhibitor p21cip1/WAF1 gene is accompanied by increased nuclease hypersensitivity. Chromatin immunoprecipitation assays of the H4/n gene reveal that acetylated histones H3 and H4 are maintained at the same levels in proliferating and postproliferative cells. Thus, the chromatin of the H4/n locus remains in an open state even after transcription ceases. Using ligation-mediated PCR to visualize genomic DNase I footprints at single-nucleotide resolution, we find that protein occupancy at the site II cell cycle element is selectively diminished in differentiated cells while the site I element remains occupied. Decreased occupancy of site II is reflected by loss of the site II binding protein HiNF-P. We conclude that H4 gene transcription during differentiation is downregulated by modulating protein interaction at the site II cell cycle element and that retention of an open chromatin conformation may be associated with site I occupancy.


2005 ◽  
Vol 38 (11) ◽  
pp. 966-972 ◽  
Author(s):  
Concepción González ◽  
Belén García-Berrocal ◽  
Tamar Talaván ◽  
Maria Luisa Casas ◽  
José Alejandro Navajo ◽  
...  

Cytometry ◽  
1996 ◽  
Vol 25 (1) ◽  
pp. 104-108 ◽  
Author(s):  
Alberto Orfao ◽  
Santiago Carbajo ◽  
Frank Dolbeare ◽  
Juana Ciudad ◽  
Antonio Lopez ◽  
...  

2009 ◽  
Vol 27 (15_suppl) ◽  
pp. e14613-e14613
Author(s):  
K. A. Robertson ◽  
E. S. Colvin ◽  
M. R. Kelley ◽  
M. L. Fishel

e14613 Background: ATRA + chemotherapy has improved the treatment of promyelocytic leukemia(APL). However, 25% of ATRA treated APL patients experience toxicities that comprise the RAS (life-threatening respiratory distress, edema, renal failure, hypotension, coagulopathy and rising blast count). One approach to prevent RAS is to limit blast proliferation and enhance myeloid differentiation. Ref-1 is a DNA repair protein that functions in redox regulation of cellular proteins, such as Fos, Jun, p53, and NFkB. HL60 myeloid leukemia cells are promyeloblasts that respond to ATRA with granulocytic differentiation/growth arrest. Prior studies suggest Ref-1 redox control is integral to ATRA-induced differentiation. To define the role of the redox function of Ref-1, we used the Ref-1 specific drug, APX3330, to block Ref-1 redox function and examined the response of HL60 cells to ATRA. Methods: Cell growth assessed using trypan blue. Differentiation was evaluated by morphology and expression of CD11b by flow cytometry. Apoptosis was assayed by annexin-PI staining on flow cytometry and cell cycle analysis assayed with propidium iodide flow cytometry. To assess activation of the MAPK pathway, BLR-1 expression was determined by real time PCR. Results: 1) APX3330 blockade of Ref-1 redox function resulted in limited cell growth yet a profound increase in differentiation and a moderate increase in apoptosis. 2) dose dependent studies with ATRA showed a similar degree of differentiation in cells treated with 10 μM ATRA to cells treated with APX3330 + 0.01 μM ATRA; allowing HL60 cells + APX3330 to give a similar response to a 1000 fold lower dose of ATRA. APX3330 alone did not induce differentiation and induced only minimal apoptosis but in combination with ATRA, increased the number of cells in G1/G0 phase significantly. 3) APX3330 + ATRA increased BLR-1 expression significantly by real time PCR suggesting enhanced activation of the MAPK pathway. Conclusions: APX3330 + ATRA limits HL60 growth and dramatically enhances terminal granulocytic differentiation. These finding may provide a therapeutic approach for prevention of the RAS. No significant financial relationships to disclose.


Cancer ◽  
1981 ◽  
Vol 48 (4) ◽  
pp. 985-988 ◽  
Author(s):  
Wlodzimierz Olszewski ◽  
Zbigniew Darzynkiewicz ◽  
Paul Peter Rosen ◽  
Morton K. Schwartz ◽  
M. R. Melamed

Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 3694-3694
Author(s):  
Pilar De La Puente ◽  
Ellen Weisberg ◽  
Atsushi Nonami ◽  
Micah John Luderer ◽  
Richard M. Stone ◽  
...  

Abstract Introduction: Current treatment options as well as clinical efficacy are limited for acute myeloid leukemia (AML), Ph+ acute lymphoblastic leukemia (Ph+ ALL), and chronic myelogenous leukemia (CML). In response to the pressing need for more efficacious treatment approaches and strategies to override drug resistance in advanced stage AML, Ph+ ALL, and CML, we investigated the effects of inhibition of integrin-linked kinase (ILK) as a potentially novel and effective approach to treatment of these challenging malignancies. ILK is an intracellular adaptor and kinase that links the integrins, cell-adhesion receptors, and growth factors to a range of signaling pathways. It has been shown that inhibition of ILK expression and activity is anti-tumorigenic, which makes ILK an attractive target for cancer therapeutics. Compound 22 (Cpd22, N-Methyl-3-(1-(4-(piperazin-1-yl)phenyl)-5-(4′-(trifluoromethyl)-[1,1′-biphenyl]-4-yl)-1H-pyrazol-3-yl)propanamide) is a cell-permeable, tri-substituted pyrazol compound that acts as a potent and targeted ILK inhibitor. In the present study, we investigated ILK as a putative novel target for treatment of AML, Ph+ ALL, and CML, and Cpd22 as a potential novel anti-leukemia agent. Methods: Compound 22 (Cpd22) was purchased from EMD Millipore. The expression of ILK in AML (K052, NOMO-1, THP, MOLM14), CML (K562, Ku812F, LAMA84S and LAMA84R), and Ph+ ALL (SUP-B15) cell lines, primary patient cells, and human Bone Marrow Mononuclear Cells (BM MNCs) was analyzed by flow cytometry. AML, Ph+ ALL, CML cell lines and peripheral blood mononuclear cells (PBMCs) were cultured with ILK inhibitor, Cpd22 (0-1000 nM) for 3 days. Toxicity of Cdp22 (0-500 nM) toward BM MNCs and primary patient cells (CML, ALL, and AML) was also assessed. Cell lines and/or primary patient cells were analyzed for cell proliferation by MTT assay; cell cycle by DNA staining with PI and analyzed by flow cytometry; apoptosis was analyzed by Annexin V/PI staining and analyzed by flow cytometry; and cell signaling associated with proliferation, cell cycle, and apoptosis was analyzed by western blotting. In addition, ILK knockdown of AML and CML cell lines was evaluated. Results: Normal BM MNCs showed ILK expression, but expression was lower than in cell lines and primary samples from AML, CML, and ALL. Cpd22 inhibited the proliferation of AML, ALL, and CML cell lines, while none of normal PBMC and normal BM MNCs controls were affected by the same concentration range after three days of treatment with Cpd22 as a single agent. ILK expression in primary AML patient cells correlated with efficacy of Cpd22: Specifically, the higher the ILK expression, the more sensitivity to Cpd22. ILK expression in primary ALL patient cells also correlated with the efficacy of Cpd22: Specifically, the higher the ILK expression, the more sensitivity to Cpd22. We validated the target specificity of Cpd22 in CML cells by immuno-blotting and investigating inhibitor effects on signaling molecules downstream of ILK. Cpd22 potently suppressed the phosphorylation levels of Ser-473-Akt (pAKT) and another ILK substrate, pGSK-3. We observed cell cycle arrest in Cpd22-treated cells, specifically accumulation of apoptotic cells in subG1 and Annexin/PI staining showed a 3-fold increase in the fraction of apoptotic cells staining positive for Annexin and PI in Cpd22-treated cells. Immuno-blotting confirmed cell cycle arrest by decreased pRb and increased cell cycle inhibitor p27; and drug induction of apoptosis through the caspase intrinsic pathway by demonstrating increased cleavage of caspase-3 and caspase-9. The importance of ILK for the growth of leukemia cells was demonstrated by knockdown of ILK in AML and CML cell lines, which led to decreases in cell proliferation. These results suggest a partial dependency of acute and chronic myeloid leukemia cells on ILK for growth, and are consistent with results obtained with the ILK inhibitor, Cpd22. Conclusions: In conclusion, our results suggest that the ILK inhibition may be an effective treatment for AML, Ph+ ALL, and CML as a single therapy, with ILK expression levels positively correlating with the efficacy of ILK inhibition. The identification of ILK as a novel target for leukemia therapy warrants further investigation as a therapeutic approach that could be of potential clinical benefit in both acute and chronic myeloid leukemias. Disclosures Azab: Verastem: Research Funding; Selexys: Research Funding; Karyopharm: Research Funding; Targeted Therapeutics LLC: Other: Founder and owner; Cell Works: Research Funding.


Sign in / Sign up

Export Citation Format

Share Document