scholarly journals Rolling pits of Hartmann’s mountain zebra ( Zebra equus hartmannae ) increase vegetation diversity and landscape heterogeneity in the Pre‐Namib

2021 ◽  
Author(s):  
Thomas C. Wagner ◽  
Kenneth Uiseb ◽  
Christina Fischer
Land ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1233
Author(s):  
Shixian Luo ◽  
Jing Xie ◽  
Katsunori Furuya

Urban parks are essential parts of a city’s natural environment, and blue spaces of urban parks bring aesthetic and health benefits to people. However, the current blue spaces mainly focus on the marine environment or a giant water body scale at the urban or regional level. The urban park blue spaces (e.g., rivers, creeks, ponds) are relatively neglected. An experiment involving 10 different urban park blue spaces in Huanhuaxi park was conducted to assess urban park blue spaces’ aesthetic preference and restorative potential. The results indicated that (1) a water body with good water quality and natural visual form may be more attractive and have restorative potential; (2) blue spaces with high vegetation diversity are preferred, and artificial elements should be evaluated more carefully when added to the scene to avoid disharmony and conflict with the surrounding environment; (3) in practical design, the proportions of plants, buildings, topographical changes, and water should be coordinated to maintain the blue space’s landscape heterogeneity; (4) more leisure activities and interactions should be considered for better recovery; and (5) designers need to emphasize the balance of natural and man-made elements to enhance the visual quality of the water feature. This investigation is important for the management and development of leisure and natural resources in urban parks.


2006 ◽  
Vol 7 (2) ◽  
pp. 199-209 ◽  
Author(s):  
T. Standovár ◽  
P. Ódor ◽  
R. Aszalós ◽  
L. Gálhidy

2019 ◽  
Vol 5 ◽  
pp. 104
Author(s):  
Suhendra Purnawan ◽  
Subari Yanto ◽  
Ernawati S.Kaseng

This study aims to describe the profile of vegetation diversity in the mangrove ecosystem in Tamuku Village, Bone-Bone-Bone District, North Luwu Regency. This research is a qualitative research using survey methods. The data collection technique uses the Quadrant Line Transect Survey technique. The data analysis technique uses the thinking flow which is divided into three stages, namely describing phenomena, classifying them, and seeing how the concepts that emerge are related to each other. The results of this study are the profile of mangrove vegetation in Tamuku Village, which is still found 16 varieties of true mangrove vegetation and 7 varieties of mangrove vegetation joined in the coastal area of Tamuku Village, Bone-Bone District, North Luwu Regency, South Sulawesi. The condition of mangrove vegetation in Tamuku Village is currently very worrying due to human activities that cause damage such as the project of normalization of flow, opening of new farms, disposal of garbage, water pollution due to chemicals, and exploitation of mangrove forests for living needs. The impact is ecosystem damage and reduced vegetation area as a place to grow and develop mangroves.


2020 ◽  
pp. 75-99
Author(s):  
O. I. Sumina

One of the thermokarst relief forms is baidzharakh massif — the group of mounds separated by trenches formed as a result of the underground ice-wedge polygonal networks melting (Fig. 1). Study of baidzharakh vegetation took place on the northeast coast of the Taimyr Peninsula (the Pronchishcheva Bay area) and on the New Siberian Islands (the Kotelny Island) in 1973–1974 (Sumina, 1975, 1976, 1977a, b, 1979 et al.). The aim of this paper is to produce the classification of baidzharakh mound and trenches communities according to the Brown-Blanquet approach (Westhoff, Maarel, 1978) and to compare these data with the community types earlier established on domination principle (Sumina, 1975 et al.). The information obtained in the 1970s could be helpful in a comparative assessment of the thermokarst process dynamics over the past 4 decades, as well as for comparing these processes in other regions of the Arctic. Both studied areas are located in the northern part of the arctic tundra subzone. On the Taimyr Peninsula (and in particular in the Pronchishcheva Bay area) the plakor (zonal) communities belong to the ass. Salici polaris–Hylocomietum alaskani Matveyeva 1998. Our relevés of plakor tundra on the Kotelny Island demonstrate similarity with the zonal communities of the northeast coast of the Taimyr Peninsula (Table 2). Relevés of communities of thermokarst mounds were made within their boundaries, the size of ~ 30 m². In trenches sample plots of the same area had rectangular shape according to trench width. Relevés of plakor tundra were made on 5x6 m plots. There were marked: location in relief, moistening, stand physiognomy, nanorelief, the percent of open ground patches and degree of their overgrowing, total plant cover, that of vascular plants, mosses, and lichens (especially — crustose ons), and cover estimates for each species. The shape of thermokarst mounds depends on the stage of thermodenudation processes. Flat polygons about 0.5 m height with vegetation similar to the plakor tundra are formed at the beginning of ice melting (Fig. 3, a), after which the deformation of the mounds (from eroded flat polygon (Fig. 3, b) to eroded conical mound (Fig. 3, c). Such mounds of maximal height up to 5 m are located on the middle part of steep slopes, where thermodenudation is very active. The last stage of mound destruction is slightly convex mound with a lumpy surface and vegetation, typical to snowbed sites at slope foots (Fig. 3, d, and 5). Both on watersheds and on gentle slopes mounds are not completely destroyed; and on such elongated smooth-conical mounds dense meadow-like vegetation is developed (Fig. 6). On the Kotelny Island thermokarst mounds of all described shapes occur, while in the Pronchishcheva Bay area only flat polygons, eroded flat polygons, and elongated smooth-conical mounds are presented. Under the influence of thermodenudation the plakor (zonal) vegetation is being transformed that allows to consider the most of mound and trench communities as the variants of zonal association. On the base of 63 relevés, made in 14 baidzharakh massifs, 2 variants with 7 subvariants of the ass. Salici polaris–Hylocomietum alaskani Matveyeva 1998 were established, as well as 1 variant of the azonal ass. Poo arcticae– Dupontietum fisheri Matveyeva 1994, which combines the vegetation of wet trenches with dense herbmoss cover. A detailed description of each subvariant is done. All these syntaxa are compared with the types of mound and trenh communities established previously by the domination principle (Sumina, 1975, 1976, 1979 et al.) and with Brown-Blanquet’ syntaxa published by other authors. The Brown-Blanquet approach in compare with domination principle, clearly demonstrates the similarity between zonal and baidzharakh massifs vegetation. Diagnostic species of syntaxa of baidzharakh vegetation by other authors (Matveyeva, 1994; Zanokha, 1995; Kholod, 2007, 2014; Telyatnikov et al., 2017) differ from ours. On the one hand, this is due to the fact that all mentioned researchers worked in another areas, and on the other, with different hierarchial levels of syntaxa, which are subassociations (or vicariants) in cited works or variants and subvariants in the our. Communities of mounds as well as of trenches in different regions have unlike species composition, but similar apearance, which depends on the similarity of the life form composition and community pattern, stage of their transformation and environmental factors. This fact is a base to group communities by physiognomy in order to have an opportunity of comparative analysis of baidzharakh vegetation diversity in different regions of the Arctic. In total, 6 such groups for thermokarst mounds and trenches are proposed: “tundra-like” ― vegetation of flat polygonal mounds (or trenches) is similar to the plakor (zonal) communities; “eroded tundra-like” ― tundra-like vegetation is presented as fragments, open ground occupies the main part of flat polygonal mounds; “eroded mounds with nonassociated vegetation” ― eroded mounds of various shapes up to sharp conical with absent vegetation at the top and slopes, sparse pioneer vascular plants on a bare substrate and crustose lichens and chionophilous grasses at foots; “meadow-like” ― herb stands with a participation of tundra dwarf-shrubs, mosses, and lichens on elongated smooth-conical mounds and in moderately moist trenches; “communities in snowbeds” ― thin plant cover formed by small mosses, liverworts, crustose lichens, and sparse vascular plants in snowbed habitats on destroyed slightly convex mounds with a lumpy surface and in trenches; “communities of cotton grass” or others, depending on the dominant species ― in wet trenches where vegetation is similar to the arctic hypnum bogs with dominant hygrophyte graminoids as Eriophorum scheuchzeri, E. polystachion, Dupontia fischeri et al. This sheme according to physiognomic features of thermokarst mound and trench communities, as a simplier way to assess the current dynamic stage of the baidzharakh massifs, may be useful for monitoring the thermodenudation activity in different areas of the Arctic, particularly in connection with observed climate changes (ACIA, 2004) and a possible dramatic “cascade of their environmental consequences” (Fraser et al., 2018).


2021 ◽  
Author(s):  
Arkadiusz Nowak ◽  
Sebastian Świerszcz ◽  
Sylwia Nowak ◽  
Marcin Nobis

AbstractThis paper presents the results of phytosociological research on scree vegetation of the Pamir and south-western Tian Shan. We collected 222 phytosociological relevés during field studies conducted in 2015–2019, applying the Braun-Blanquet approach. We identified 21 plant communities on mobile and stabilized screes of colluvial cones, aprons and fans, inhabiting mainly the montane and alpine belts in several ranges (e.g. Peter the First, Alichur, Shugnan, Shachdarian, Darvaz, Rushan, Vanch, Fergana, Kyrgyz and Terskey ranges). As a result we provide the first comprehensive hierarchical syntaxonomic synopsis of scree communities at montane and alpine elevations in the eastern Middle Asia. The collected vegetation relevés represent the majority of the variation among the phytocoenoses of gravel, pebble, cobble and rock block slides and screes in the montane and alpine belts. As a result of field studies and Twinspan analyses, nine associations were identified on screes of the Pamir and western Tian Shan. All these communities were assigned to the Sileno brahuicae-Lactucetalia orientalis Nowak et al. 2021. Additionally, within the nitrophilous compact gravel screes one subassociation of Corydalidetum kashgaricae trigonelletosum gontscharovii was distinguished. In the most arid zone two additional plant associations and one subassociation were identified in gravelly semi-deserts zone. The main factors determining the species composition of the studied associations are scree mobility, rock particle size, elevation above sea level and slope inclination. Our research revealed considerable diversity of scree habitats of montane and alpine belts what might be astonishing regarding harsh environment of this mountainous territory. However, a great number of lineages that evolved here and particularly rich species pool of this habitat in Middle Asia facilitate remarkable diversity among vegetation of taluses and screes. The distinctiveness of species composition is additionally enhanced by high degree of endemism of chasmophytic habitats in the eastern part of Middle Asia. Despite recent developments, the prominent chasmophytic vegetation of Middle Asia still needs thorough studies focused on its relationship to semi-desert, tall-forb and petrophytic communities of high mountains of the Pamir, Hindu-Kush, Kunlun and Central Tian Shan.


Land ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 807
Author(s):  
Simone Valeri ◽  
Laura Zavattero ◽  
Giulia Capotorti

In promoting biodiversity conservation and ecosystem service capacity, landscape connectivity is considered a critical feature to counteract the negative effects of fragmentation. Under a Green Infrastructure (GI) perspective, this is especially true in rural and peri-urban areas where a high degree of connectivity may be associated with the enhancement of agriculture multifunctionality and sustainability. With respect to GI planning and connectivity assessment, the role of dispersal traits of tree species is gaining increasing attention. However, little evidence is available on how to select plant species to be primarily favored, as well as on the role of landscape heterogeneity and habitat quality in driving the dispersal success. The present work is aimed at suggesting a methodological approach for addressing these knowledge gaps, at fine scales and for peri-urban agricultural landscapes, by means of a case study in the Metropolitan City of Rome. The study area was stratified into Environmental Units, each supporting a unique type of Potential Natural Vegetation (PNV), and a multi-step procedure was designed for setting priorities aimed at enhancing connectivity. First, GI components were defined based on the selection of the target species to be supported, on a fine scale land cover mapping and on the assessment of land cover type naturalness. Second, the study area was characterized by a Morphological Spatial Pattern Analysis (MSPA) and connectivity was assessed by Number of Components (NC) and functional connectivity metrics. Third, conservation and restoration measures have been prioritized and statistically validated. Notwithstanding the recognized limits, the approach proved to be functional in the considered context and at the adopted level of detail. Therefore, it could give useful methodological hints for the requalification of transitional urban–rural areas and for the achievement of related sustainable development goals in metropolitan regions.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Remo Ryser ◽  
Myriam R. Hirt ◽  
Johanna Häussler ◽  
Dominique Gravel ◽  
Ulrich Brose

AbstractHabitat fragmentation and eutrophication have strong impacts on biodiversity. Metacommunity research demonstrated that reduction in landscape connectivity may cause biodiversity loss in fragmented landscapes. Food-web research addressed how eutrophication can cause local biodiversity declines. However, there is very limited understanding of their cumulative impacts as they could amplify or cancel each other. Our simulations of meta-food-webs show that dispersal and trophic processes interact through two complementary mechanisms. First, the ‘rescue effect’ maintains local biodiversity by rapid recolonization after a local crash in population densities. Second, the ‘drainage effect’ stabilizes biodiversity by preventing overshooting of population densities on eutrophic patches. In complex food webs on large spatial networks of habitat patches, these effects yield systematically higher biodiversity in heterogeneous than in homogeneous landscapes. Our meta-food-web approach reveals a strong interaction between habitat fragmentation and eutrophication and provides a mechanistic explanation of how landscape heterogeneity promotes biodiversity.


Ecology ◽  
1989 ◽  
Vol 70 (1) ◽  
pp. 292-293
Author(s):  
Norman L. Christensen

Sign in / Sign up

Export Citation Format

Share Document