scholarly journals Machine ​learning algorithms for claims data‐based prediction of in‐hospital mortality in patients with heart failure

2021 ◽  
Author(s):  
Sebastian König ◽  
Vincent Pellissier ◽  
Sven Hohenstein ◽  
Andres Bernal ◽  
Laura Ueberham ◽  
...  
2021 ◽  
Vol 11 ◽  
Author(s):  
Ximing Nie ◽  
Yuan Cai ◽  
Jingyi Liu ◽  
Xiran Liu ◽  
Jiahui Zhao ◽  
...  

Objectives: This study aims to investigate whether the machine learning algorithms could provide an optimal early mortality prediction method compared with other scoring systems for patients with cerebral hemorrhage in intensive care units in clinical practice.Methods: Between 2008 and 2012, from Intensive Care III (MIMIC-III) database, all cerebral hemorrhage patients monitored with the MetaVision system and admitted to intensive care units were enrolled in this study. The calibration, discrimination, and risk classification of predicted hospital mortality based on machine learning algorithms were assessed. The primary outcome was hospital mortality. Model performance was assessed with accuracy and receiver operating characteristic curve analysis.Results: Of 760 cerebral hemorrhage patients enrolled from MIMIC database [mean age, 68.2 years (SD, ±15.5)], 383 (50.4%) patients died in hospital, and 377 (49.6%) patients survived. The area under the receiver operating characteristic curve (AUC) of six machine learning algorithms was 0.600 (nearest neighbors), 0.617 (decision tree), 0.655 (neural net), 0.671(AdaBoost), 0.819 (random forest), and 0.725 (gcForest). The AUC was 0.423 for Acute Physiology and Chronic Health Evaluation II score. The random forest had the highest specificity and accuracy, as well as the greatest AUC, showing the best ability to predict in-hospital mortality.Conclusions: Compared with conventional scoring system and the other five machine learning algorithms in this study, random forest algorithm had better performance in predicting in-hospital mortality for cerebral hemorrhage patients in intensive care units, and thus further research should be conducted on random forest algorithm.


2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Ebrahim Mohammed Senan ◽  
Ibrahim Abunadi ◽  
Mukti E. Jadhav ◽  
Suliman Mohamed Fati

Cardiovascular disease (CVD) is one of the most common causes of death that kills approximately 17 million people annually. The main reasons behind CVD are myocardial infarction and the failure of the heart to pump blood normally. Doctors could diagnose heart failure (HF) through electronic medical records on the basis of patient’s symptoms and clinical laboratory investigations. However, accurate diagnosis of HF requires medical resources and expert practitioners that are not always available, thus making the diagnosing challengeable. Therefore, predicting the patients’ condition by using machine learning algorithms is a necessity to save time and efforts. This paper proposed a machine-learning-based approach that distinguishes the most important correlated features amongst patients’ electronic clinical records. The SelectKBest function was applied with chi-squared statistical method to determine the most important features, and then feature engineering method has been applied to create new features correlated strongly in order to train machine learning models and obtain promising results. Optimised hyperparameter classification algorithms SVM, KNN, Decision Tree, Random Forest, and Logistic Regression were used to train two different datasets. The first dataset, called Cleveland, consisted of 303 records. The second dataset, which was used for predicting HF, consisted of 299 records. Experimental results showed that the Random Forest algorithm achieved accuracy, precision, recall, and F1 scores of 95%, 97.62%, 95.35%, and 96.47%, respectively, during the test phase for the second dataset. The same algorithm achieved accuracy scores of 100% for the first dataset and 97.68% for the second dataset, while 100% precision, recall, and F1 scores were reached for both datasets.


Hypertension ◽  
2020 ◽  
Vol 76 (2) ◽  
pp. 569-576 ◽  
Author(s):  
Kelvin K.F. Tsoi ◽  
Nicholas B. Chan ◽  
Karen K.L. Yiu ◽  
Simon K.S. Poon ◽  
Bryant Lin ◽  
...  

Visit-to-visit blood pressure variability (BPV) has been shown to be a predictor of cardiovascular disease. We aimed to classify the BPV levels using different machine learning algorithms. Visit-to-visit blood pressure readings were extracted from the SPRINT study in the United States and eHealth cohort in Hong Kong (HK cohort). Patients were clustered into low, medium, and high BPV levels with the traditional quantile clustering and 5 machine learning algorithms including K-means. Clustering methods were assessed by Stability Index. Similarities were assessed by Davies-Bouldin Index and Silhouette Index. Cox proportional hazard regression models were fitted to compare the risk of myocardial infarction, stroke, and heart failure. A total of 8133 participants had average blood pressure measurement 14.7 times in 3.28 years in SPRINT and 1094 participants who had average blood pressure measurement 165.4 times in 1.37 years in HK cohort. Quantile clustering assigned one-third participants as high BPV level, but machine learning methods only assigned 10% to 27%. Quantile clustering is the most stable method (stability index: 0.982 in the SPRINT and 0.948 in the HK cohort) with some levels of clustering similarities (Davies-Bouldin Index: 0.752 and 0.764, respectively). K-means clustering is the most stable across the machine learning algorithms (stability index: 0.975 and 0.911, respectively) with the lowest clustering similarities (Davies-Bouldin Index: 0.653 and 0.680, respectively). One out of 7 in the population was classified with high BPV level, who showed to have higher risk of stroke and heart failure. Machine learning methods can improve BPV classification for better prediction of cardiovascular diseases.


2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Yogesh Kumar ◽  
Apeksha Koul ◽  
Pushpendra Singh Sisodia ◽  
Jana Shafi ◽  
Verma Kavita ◽  
...  

Quantum-enhanced machine learning plays a vital role in healthcare because of its robust application concerning current research scenarios, the growth of novel medical trials, patient information and record management, procurement of chronic disease detection, and many more. Due to this reason, the healthcare industry is applying quantum computing to sustain patient-oriented attention to healthcare patrons. The present work summarized the recent research progress in quantum-enhanced machine learning and its significance in heart failure detection on a dataset of 14 attributes. In this paper, the number of qubits in terms of the features of heart failure data is normalized by using min-max, PCA, and standard scalar, and further, has been optimized using the pipelining technique. The current work verifies that quantum-enhanced machine learning algorithms such as quantum random forest (QRF), quantum K nearest neighbour (QKNN), quantum decision tree (QDT), and quantum Gaussian Naïve Bayes (QGNB) are better than traditional machine learning algorithms in heart failure detection. The best accuracy rate is (0.89), which the quantum random forest classifier attained. In addition to this, the quantum random forest classifier also incurred the best results in F 1 score, recall and, precision by (0.88), (0.93), and (0.89), respectively. The computation time taken by traditional and quantum-enhanced machine learning algorithms has also been compared where the quantum random forest has the least execution time by 150 microseconds. Hence, the work provides a way to quantify the differences between standard and quantum-enhanced machine learning algorithms to select the optimal method for detecting heart failure.


2021 ◽  
Author(s):  
Yasser EL-Manzalawy ◽  
Mostafa Abbas ◽  
Ian Hoaglund ◽  
Alvaro Ulloa Cerna ◽  
Thomas B. Morland ◽  
...  

ABSTRACTSeverity scores assess the acuity of critical illness by penalizing for the deviation of physiologic measurements from normal and aggregating these penalties (also called “weights” or “subscores”) into a final score (or probability) for quantifying the severity of critical illness (or the likelihood of in-hospital mortality). Although these simple additive models are human readable and interpretable, their predictive performance needs to be further improved. To address this need, we argue for replacing these simple additive models with models based on state-of-the-art non-linear supervised learning algorithms (e.g., Random Forest (RF) and eXtreme Gradient Boosting (XGB)). Specifically, we present OASIS+, a variant of the Oxford Acute Severity of Illness Score (OASIS) in which an ensemble of 200 decision trees is used to predict in-hospital mortality based on the 10 same clinical variables in OASIS. Using a test set of 9566 admissions extracted from MIMIC-III database, we show that the performance of OASIS can be substantially improved from AUC score of 0.77 to 0.83 using OASIS+. Moreover, we show that OASIS+ has superior performance compared to eight other commonly used severity scoring methods. Our results underscore the potential of improving existing severity scores by using more sophisticated machine learning algorithms (e.g., ensemble of non-linear decision tress) not just via including additional physiologic measurements.


2020 ◽  
Vol 39 (5) ◽  
pp. 6579-6590
Author(s):  
Sandy Çağlıyor ◽  
Başar Öztayşi ◽  
Selime Sezgin

The motion picture industry is one of the largest industries worldwide and has significant importance in the global economy. Considering the high stakes and high risks in the industry, forecast models and decision support systems are gaining importance. Several attempts have been made to estimate the theatrical performance of a movie before or at the early stages of its release. Nevertheless, these models are mostly used for predicting domestic performances and the industry still struggles to predict box office performances in overseas markets. In this study, the aim is to design a forecast model using different machine learning algorithms to estimate the theatrical success of US movies in Turkey. From various sources, a dataset of 1559 movies is constructed. Firstly, independent variables are grouped as pre-release, distributor type, and international distribution based on their characteristic. The number of attendances is discretized into three classes. Four popular machine learning algorithms, artificial neural networks, decision tree regression and gradient boosting tree and random forest are employed, and the impact of each group is observed by compared by the performance models. Then the number of target classes is increased into five and eight and results are compared with the previously developed models in the literature.


Sign in / Sign up

Export Citation Format

Share Document