scholarly journals Mortality Prediction in Cerebral Hemorrhage Patients Using Machine Learning Algorithms in Intensive Care Units

2021 ◽  
Vol 11 ◽  
Author(s):  
Ximing Nie ◽  
Yuan Cai ◽  
Jingyi Liu ◽  
Xiran Liu ◽  
Jiahui Zhao ◽  
...  

Objectives: This study aims to investigate whether the machine learning algorithms could provide an optimal early mortality prediction method compared with other scoring systems for patients with cerebral hemorrhage in intensive care units in clinical practice.Methods: Between 2008 and 2012, from Intensive Care III (MIMIC-III) database, all cerebral hemorrhage patients monitored with the MetaVision system and admitted to intensive care units were enrolled in this study. The calibration, discrimination, and risk classification of predicted hospital mortality based on machine learning algorithms were assessed. The primary outcome was hospital mortality. Model performance was assessed with accuracy and receiver operating characteristic curve analysis.Results: Of 760 cerebral hemorrhage patients enrolled from MIMIC database [mean age, 68.2 years (SD, ±15.5)], 383 (50.4%) patients died in hospital, and 377 (49.6%) patients survived. The area under the receiver operating characteristic curve (AUC) of six machine learning algorithms was 0.600 (nearest neighbors), 0.617 (decision tree), 0.655 (neural net), 0.671(AdaBoost), 0.819 (random forest), and 0.725 (gcForest). The AUC was 0.423 for Acute Physiology and Chronic Health Evaluation II score. The random forest had the highest specificity and accuracy, as well as the greatest AUC, showing the best ability to predict in-hospital mortality.Conclusions: Compared with conventional scoring system and the other five machine learning algorithms in this study, random forest algorithm had better performance in predicting in-hospital mortality for cerebral hemorrhage patients in intensive care units, and thus further research should be conducted on random forest algorithm.

Circulation ◽  
2020 ◽  
Vol 142 (Suppl_3) ◽  
Author(s):  
Stephanie O Frisch ◽  
Zeineb Bouzid ◽  
Jessica Zègre-Hemsey ◽  
Clifton W CALLAWAY ◽  
Holli A Devon ◽  
...  

Introduction: Overcrowded emergency departments (ED) and undifferentiated patients make the provision of care and resources challenging. We examined whether machine learning algorithms could identify ED patients’ disposition (hospitalization and critical care admission) using readily available objective triage data among patients with symptoms suggestive of acute coronary syndrome (ACS). Methods: This was a retrospective observational cohort study of adult patients who were triaged at the ED for a suspected coronary event. A total of 162 input variables (k) were extracted from the electronic health record: demographics (k=3), mode of transportation (k=1), past medical/surgical history (k=57), first ED vital signs (k=7), home medications (k=31), symptomology (k=40), and the computer generated automatic interpretation of 12-lead electrocardiogram (k=23). The primary outcomes were hospitalization and critical care admission (i.e., admission to intensive or step-down care unit). We used 10-fold stratified cross validation to evaluate the performance of five machine learning algorithms to predict the study outcomes: logistic regression, naïve Bayes, random forest, gradient boosting and artificial neural network classifiers. We determined the best model by comparing the area under the receiver operating characteristic curve (AUC) of all models. Results: Included were 1201 patients (age 64±14, 39% female; 10% Black) with a total of 956 hospitalizations, and 169 critical care admissions. The best performing machine learning classifier for the outcome of hospitalization was gradient boosting machine with an AUC of 0.85 (95% CI, 0.82–0.89), 89% sensitivity, and F-score of 0.83; random forest classifier performed the best for the outcome of critical care admission with an AUC of 0.73 (95% CI, 0.70–0.77), 76% sensitivity, and F-score of 0.56. Conclusion: Predictive machine learning algorithms demonstrate excellent to good discriminative power to predict hospitalization and critical care admission, respectively. Administrators and clinicians could benefit from machine learning approaches to predict hospitalization and critical care admission, to optimize and allocate scarce ED and hospital resources and provide optimal care.


2021 ◽  
Author(s):  
Yanrong Cai ◽  
Xiang Jiang ◽  
Weifan Dai ◽  
Qinyuan Yu

Abstract BackgroundFractures of pelvis and/or Acetabulum are leading risks of death worldwide. However, the capability of in-hospital mortality prediction by conventional system is so far limited. Here, we hypothesis that the use of machine learning (ML) algorithms could provide better performance of prediction than the traditional scoring system Simple Acute Physiologic Score (SAPS) II for patients with pelvic and acetabular trauma in intensive care unit (ICU).MethodsWe developed customized mortality prediction models with ML techniques based on MIMIC-III, an open access de-defined database consisting of data from more than 25,000 patients who were admitted to the Beth Israel Deaconess Medical Center (BIDMC). 307 patients were enrolled with an ICD-9 diagnosis of pelvic, acetabular or combined pelvic and acetabular fractures and who had an ICU stay more than 72 hours. ML models including decision tree, logistic regression and random forest were established by using the SAPS II features from the first 72 hours after ICU admission and the traditional first-24-hours features were used to build respective control models. We evaluated and made a comparison of each model’s performance through the area under the receiver-operating characteristic curve (AUROC). Feature importance method was used to visualize top risk factors for disease mortality.ResultsAll the ML models outperformed the traditional scoring system SAPS II (AUROC=0.73), among which the best fitted random forest model had the supreme performance (AUROC of 0.90). With the use of evolution of physiological features over time rather than 24-hours snapshots, all the ML models performed better than respective controls. Age remained the top of feature importance for all classifiers. Age, BUN (minimum value on day 2), and BUN (maximum value on day 3) were the top 3 predictor variables in the optimal random forest experiment model. In the best decision tree model, the top 3 risk factors, in decreasing order of contribution, were age, the lowest systolic blood pressure on day 1 and the same value on day 3.ConclusionThe results suggested that mortality modeling with ML techniques could aid in better performance of prediction for models in the context of pelvic and acetabular trauma and potentially support decision-making for orthopedics and ICU practitioners.


Sensors ◽  
2018 ◽  
Vol 18 (10) ◽  
pp. 3532 ◽  
Author(s):  
Nicola Mansbridge ◽  
Jurgen Mitsch ◽  
Nicola Bollard ◽  
Keith Ellis ◽  
Giuliana Miguel-Pacheco ◽  
...  

Grazing and ruminating are the most important behaviours for ruminants, as they spend most of their daily time budget performing these. Continuous surveillance of eating behaviour is an important means for monitoring ruminant health, productivity and welfare. However, surveillance performed by human operators is prone to human variance, time-consuming and costly, especially on animals kept at pasture or free-ranging. The use of sensors to automatically acquire data, and software to classify and identify behaviours, offers significant potential in addressing such issues. In this work, data collected from sheep by means of an accelerometer/gyroscope sensor attached to the ear and collar, sampled at 16 Hz, were used to develop classifiers for grazing and ruminating behaviour using various machine learning algorithms: random forest (RF), support vector machine (SVM), k nearest neighbour (kNN) and adaptive boosting (Adaboost). Multiple features extracted from the signals were ranked on their importance for classification. Several performance indicators were considered when comparing classifiers as a function of algorithm used, sensor localisation and number of used features. Random forest yielded the highest overall accuracies: 92% for collar and 91% for ear. Gyroscope-based features were shown to have the greatest relative importance for eating behaviours. The optimum number of feature characteristics to be incorporated into the model was 39, from both ear and collar data. The findings suggest that one can successfully classify eating behaviours in sheep with very high accuracy; this could be used to develop a device for automatic monitoring of feed intake in the sheep sector to monitor health and welfare.


2020 ◽  
Author(s):  
Jun Ke ◽  
Yiwei Chen ◽  
Xiaoping Wang ◽  
Zhiyong Wu ◽  
qiongyao Zhang ◽  
...  

Abstract BackgroundThe purpose of this study is to identify the risk factors of in-hospital mortality in patients with acute coronary syndrome (ACS) and to evaluate the performance of traditional regression and machine learning prediction models.MethodsThe data of ACS patients who entered the emergency department of Fujian Provincial Hospital from January 1, 2017 to March 31, 2020 for chest pain were retrospectively collected. The study used univariate and multivariate logistic regression analysis to identify risk factors for in-hospital mortality of ACS patients. The traditional regression and machine learning algorithms were used to develop predictive models, and the sensitivity, specificity, and receiver operating characteristic curve were used to evaluate the performance of each model.ResultsA total of 7810 ACS patients were included in the study, and the in-hospital mortality rate was 1.75%. Multivariate logistic regression analysis found that age and levels of D-dimer, cardiac troponin I, N-terminal pro-B-type natriuretic peptide (NT-proBNP), lactate dehydrogenase (LDH), high-density lipoprotein (HDL) cholesterol, and calcium channel blockers were independent predictors of in-hospital mortality. The study found that the area under the receiver operating characteristic curve of the models developed by logistic regression, gradient boosting decision tree (GBDT), random forest, and support vector machine (SVM) for predicting the risk of in-hospital mortality were 0.963, 0.960, 0.963, and 0.959, respectively. Feature importance evaluation found that NT-proBNP, LDH, and HDL cholesterol were top three variables that contribute the most to the prediction performance of the GBDT model and random forest model.ConclusionsThe predictive model developed using logistic regression, GBDT, random forest, and SVM algorithms can be used to predict the risk of in-hospital death of ACS patients. Based on our findings, we recommend that clinicians focus on monitoring the changes of NT-proBNP, LDH, and HDL cholesterol, as this may improve the clinical outcomes of ACS patients.


Author(s):  
Harsha A K

Abstract: Since the advent of encryption, there has been a steady increase in malware being transmitted over encrypted networks. Traditional approaches to detect malware like packet content analysis are inefficient in dealing with encrypted data. In the absence of actual packet contents, we can make use of other features like packet size, arrival time, source and destination addresses and other such metadata to detect malware. Such information can be used to train machine learning classifiers in order to classify malicious and benign packets. In this paper, we offer an efficient malware detection approach using classification algorithms in machine learning such as support vector machine, random forest and extreme gradient boosting. We employ an extensive feature selection process to reduce the dimensionality of the chosen dataset. The dataset is then split into training and testing sets. Machine learning algorithms are trained using the training set. These models are then evaluated against the testing set in order to assess their respective performances. We further attempt to tune the hyper parameters of the algorithms, in order to achieve better results. Random forest and extreme gradient boosting algorithms performed exceptionally well in our experiments, resulting in area under the curve values of 0.9928 and 0.9998 respectively. Our work demonstrates that malware traffic can be effectively classified using conventional machine learning algorithms and also shows the importance of dimensionality reduction in such classification problems. Keywords: Malware Detection, Extreme Gradient Boosting, Random Forest, Feature Selection.


2021 ◽  
Vol 99 (Supplement_3) ◽  
pp. 264-265
Author(s):  
Duy Ngoc Do ◽  
Guoyu Hu ◽  
Younes Miar

Abstract American mink (Neovison vison) is the major source of fur for the fur industries worldwide and Aleutian disease (AD) is causing severe financial losses to the mink industry. Different methods have been used to diagnose the AD in mink, but the combination of several methods can be the most appropriate approach for the selection of AD resilient mink. Iodine agglutination test (IAT) and counterimmunoelectrophoresis (CIEP) methods are commonly employed in test-and-remove strategy; meanwhile, enzyme-linked immunosorbent assay (ELISA) and packed-cell volume (PCV) methods are complementary. However, using multiple methods are expensive; and therefore, hindering the corrected use of AD tests in selection. This research presented the assessments of the AD classification based on machine learning algorithms. The Aleutian disease was tested on 1,830 individuals using these tests in an AD positive mink farm (Canadian Centre for Fur Animal Research, NS, Canada). The accuracy of classification for CIEP was evaluated based on the sex information, and IAT, ELISA and PCV test results implemented in seven machine learning classification algorithms (Random Forest, Artificial Neural Networks, C50Tree, Naive Bayes, Generalized Linear Models, Boost, and Linear Discriminant Analysis) using the Caret package in R. The accuracy of prediction varied among the methods. Overall, the Random Forest was the best-performing algorithm for the current dataset with an accuracy of 0.89 in the training data and 0.94 in the testing data. Our work demonstrated the utility and relative ease of using machine learning algorithms to assess the CIEP information, and consequently reducing the cost of AD tests. However, further works require the inclusion of production and reproduction information in the models and extension of phenotypic collection to increase the accuracy of current methods.


Circulation ◽  
2020 ◽  
Vol 142 (Suppl_3) ◽  
Author(s):  
vardhmaan jain ◽  
Vikram Sharma ◽  
Agam Bansal ◽  
Cerise Kleb ◽  
Chirag Sheth ◽  
...  

Background: Post-transplant major adverse cardiovascular events (MACE) are amongst the leading cause of death amongst orthotopic liver transplant(OLT) recipients. Despite years of guideline directed therapy, there are limited data on predictors of post-OLT MACE. We assessed if machine learning algorithms (MLA) can predict MACE and all-cause mortality in patients undergoing OLT. Methods: We tested three MLA: support vector machine, extreme gradient boosting(XG-Boost) and random forest with traditional logistic regression for prediction of MACE and all-cause mortality on a cohort of consecutive patients undergoing OLT at our center between 2008-2019. The cohort was randomly split into a training (80%) and testing (20%) cohort. Model performance was assessed using c-statistic or AUC. Results: We included 1,459 consecutive patients with mean ± SD age 54.2 ± 13.8 years, 32% female who underwent OLT. There were 199 (13.6%) MACE and 289 (20%) deaths at a mean follow up of 4.56 ± 3.3 years. The random forest MLA was the best performing model for predicting MACE [AUC:0.78, 95% CI: 0.70-0.85] as well as mortality [AUC:0.69, 95% CI: 0.61-0.76], with all models performing better when predicting MACE vs mortality. See Table and Figure. Conclusion: Random forest machine learning algorithms were more predictive and discriminative than traditional regression models for predicting major adverse cardiovascular events and all-cause mortality in patients undergoing OLT. Validation and subsequent incorporation of MLA in clinical decision making for OLT candidacy could help risk stratify patients for post-transplant adverse cardiovascular events.


2019 ◽  
Vol 11 (8) ◽  
pp. 976
Author(s):  
Nicholas M. Enwright ◽  
Lei Wang ◽  
Hongqing Wang ◽  
Michael J. Osland ◽  
Laura C. Feher ◽  
...  

Barrier islands are dynamic environments because of their position along the marine–estuarine interface. Geomorphology influences habitat distribution on barrier islands by regulating exposure to harsh abiotic conditions. Researchers have identified linkages between habitat and landscape position, such as elevation and distance from shore, yet these linkages have not been fully leveraged to develop predictive models. Our aim was to evaluate the performance of commonly used machine learning algorithms, including K-nearest neighbor, support vector machine, and random forest, for predicting barrier island habitats using landscape position for Dauphin Island, Alabama, USA. Landscape position predictors were extracted from topobathymetric data. Models were developed for three tidal zones: subtidal, intertidal, and supratidal/upland. We used a contemporary habitat map to identify landscape position linkages for habitats, such as beach, dune, woody vegetation, and marsh. Deterministic accuracy, fuzzy accuracy, and hindcasting were used for validation. The random forest algorithm performed best for intertidal and supratidal/upland habitats, while the K-nearest neighbor algorithm performed best for subtidal habitats. A posteriori application of expert rules based on theoretical understanding of barrier island habitats enhanced model results. For the contemporary model, deterministic overall accuracy was nearly 70%, and fuzzy overall accuracy was over 80%. For the hindcast model, deterministic overall accuracy was nearly 80%, and fuzzy overall accuracy was over 90%. We found machine learning algorithms were well-suited for predicting barrier island habitats using landscape position. Our model framework could be coupled with hydrodynamic geomorphologic models for forecasting habitats with accelerated sea-level rise, simulated storms, and restoration actions.


Water ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2927
Author(s):  
Jiyeong Hong ◽  
Seoro Lee ◽  
Joo Hyun Bae ◽  
Jimin Lee ◽  
Woon Ji Park ◽  
...  

Predicting dam inflow is necessary for effective water management. This study created machine learning algorithms to predict the amount of inflow into the Soyang River Dam in South Korea, using weather and dam inflow data for 40 years. A total of six algorithms were used, as follows: decision tree (DT), multilayer perceptron (MLP), random forest (RF), gradient boosting (GB), recurrent neural network–long short-term memory (RNN–LSTM), and convolutional neural network–LSTM (CNN–LSTM). Among these models, the multilayer perceptron model showed the best results in predicting dam inflow, with the Nash–Sutcliffe efficiency (NSE) value of 0.812, root mean squared errors (RMSE) of 77.218 m3/s, mean absolute error (MAE) of 29.034 m3/s, correlation coefficient (R) of 0.924, and determination coefficient (R2) of 0.817. However, when the amount of dam inflow is below 100 m3/s, the ensemble models (random forest and gradient boosting models) performed better than MLP for the prediction of dam inflow. Therefore, two combined machine learning (CombML) models (RF_MLP and GB_MLP) were developed for the prediction of the dam inflow using the ensemble methods (RF and GB) at precipitation below 16 mm, and the MLP at precipitation above 16 mm. The precipitation of 16 mm is the average daily precipitation at the inflow of 100 m3/s or more. The results show the accuracy verification results of NSE 0.857, RMSE 68.417 m3/s, MAE 18.063 m3/s, R 0.927, and R2 0.859 in RF_MLP, and NSE 0.829, RMSE 73.918 m3/s, MAE 18.093 m3/s, R 0.912, and R2 0.831 in GB_MLP, which infers that the combination of the models predicts the dam inflow the most accurately. CombML algorithms showed that it is possible to predict inflow through inflow learning, considering flow characteristics such as flow regimes, by combining several machine learning algorithms.


Sign in / Sign up

Export Citation Format

Share Document