scholarly journals RC structures cyclic behavior simulation with a model integrating plasticity, damage, and bond-slip

2017 ◽  
Vol 47 (2) ◽  
pp. 460-478 ◽  
Author(s):  
Bashar Alfarah ◽  
Juan Murcia-Delso ◽  
Francisco López-Almansa ◽  
Sergio Oller
2019 ◽  
Vol 37 (1) ◽  
pp. 45-56 ◽  
Author(s):  
Antonio Bossio ◽  
Francesco Fabbrocino ◽  
Tullio Monetta ◽  
Gian Piero Lignola ◽  
Andrea Prota ◽  
...  

AbstractRecently, corrosion prevention and monitoring of reinforced concrete (RC) structures became an important issue for seismic assessment of such kind of structures. Therefore, it is important to develop adequate models to represent material degradation into seismic behavior simulation of RC structures. Because of its effects, corrosion represents the most important form of degradation for materials and structures, both for wide diffusion and the amount of danger it presents. To understand the corrosion process is critical in order to design RC structures that are able to guarantee the required service life and in order to understand the residual service life and strength of an existing structure. The seismic behavior of a corroded framed RC structure is analyzed by means of push-over analyses, which allow understanding the development of the global behavior of the structure. Three different degrees of corrosion penetration were simulated, by means of the reduction of bars and stirrups’ diameters and concrete cover cracking and spalling, and three different configurations of corrosion, depending on the number of corroded frames and sides of the structural elements.


Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7753
Author(s):  
Enzo Martinelli ◽  
Antonio Caggiano

This paper aims at further advancing the knowledge about the cyclic behavior of FRP strips glued to quasi-brittle materials, such as concrete. The results presented herein derive from a numerical model based on concepts of based on fracture mechanics and already presented and validated by the authors in previous works. Particularly, it assumes that fracture processes leading to debonding develop in pure mode II, as is widely accepted in the literature. Starting from this assumption (and having clear both its advantages acnd shortcomings), the results of a parametric analysis are presented with the aim of investigating the role of both the mechanical properties of the interface bond–slip law and a relevant geometric quantity such as the bond length. The obtained results show the influence of the interface bond–slip law and FRP bond length on the resulting cyclic response of the FRP-to-concrete joint, the latter characterized in terms of S-N curves generally adopted in the theory of fatigue. Far from deriving a fully defined correlation among those parameters, the results indicate general trends that can be helpful to drive further investigation, both experimental and numerical in nature.


Author(s):  
L Davenne ◽  
A Boulkertous ◽  
A Ibrahimbegovic
Keyword(s):  

2012 ◽  
Vol 19 (5) ◽  
pp. 891-902 ◽  
Author(s):  
Hakan Yalciner ◽  
Serhan Sensoy ◽  
Ozgur Eren

Corrosion is a long-term process resulting in the deterioration of the reinforced concrete (RC) structures. Most of the structural problems observed under the impact of either earthquakes or service loads might occur due to corrosion. Therefore, prediction of the remaining service life of a corroding RC structure plays an important role to prevent serious premature damage. In this study, a corroded, 25-year-old high school building which has been demolished at an earlier time was analyzed as a function of corrosion rate. Bond-slip relationships were taken into account in nonlinear analyses as a function of corrosion rate for different time periods (i.e., non-corroded (t: 0), existing (t: 25) and 50 years after construction); and they were used to ensure the effect of time-dependent slip rotation on the global structural behaviour by modifying the target post-yield stiffness of each structural member. Nonlinear push-over analyses were performed by defining the time-dependent plastic hinge properties as a consequence of corrosion effects. In order to define the performance levels of three different time periods, nonlinear incremental dynamic analyses (IDA) were performed for 20 earthquake ground motion records as a function of corrosion rate. Results showed that bond-slip relationship between concrete and steel is very important in evaluating the non-linear behaviour of corroded RC structures.


2015 ◽  
Vol 114 ◽  
pp. 792-799 ◽  
Author(s):  
Paulo Silva Lobo ◽  
João Almeida ◽  
Lúıs Guerreiro
Keyword(s):  

2021 ◽  
Author(s):  
Yan Lan

Although reinforced concrete (RC) has an important advantage that it has virtue durability against an environmental attack, especially the resistance of corrosion of embedded reinforcements, due to the high alkalinity nature of concrete property, unfortunately, the problems of reinforcement corrosion still exist in many reinforced concrete structures. It has brought out many questions on the safety and serviceability of these corroded RC structures. Thus, it needs more effective approach for structural performance evaluation of the corroded structures. The residual capacity of the corroded reinforcement was determined through the evaluation of the volume increase of reinforcing steel and concrete crack propagation. The final determination of the service life of concrete structures was made based on the above evaluation results. Also, the effects of reinforcement corrosion on structural behaviours of RC members are investigated so that the reliable evaluation of structural performances of corroded RC members can be achieved by finite element method (FEM). The corrosion attack penetration has been given as a function of the time as input in the analyses. The load of corrosion applied inside the structural members can be modelled by the displacement around the circumferential surface between the reinforcing bars and concrete. The reduction of capability of the structures is determined from the corrosion level in the service years. Another complex phenomenon that governs concrete behaviour is the transfer of shear force across the interface by bond mechanism between concrete and steel reinforcement. It is a fundamental to most aspects of concrete behaviour. The bond mechanism is influenced by multiple parameters, such as the strength of the surrounding structures, the occurrence of splitting cracks in the concrete and the yielding of the reinforcement. However, when RC structures are analysed using the FEM, it is quite common to assume that the bond stress depends solely on the slip between the bars and concrete. In this the research the relationship of bond slip is also studied using FEM. An analytical study based on fracture mechanics was earned out to investigate the behaviour of three different types of specimens. In recent RC research, finite element modelling techniques have been developed to quickly evaluate the physical phenomena associated with cracking and bond. The non-linear finite element program ATENA with the non-linear material models for concrete, reinforcement bar and bond-slip is used to analyse cracking propagation and bond failure process. The influence between corrosion and bond slip in RC structure is also studied. Therefore, the understanding of serviceability of RC structure is improved. It was concluded that with the increase of load and the propagation of the crack, stress redistributed in the steel- continues until the specimen is damaged. The non-linear finite element fracture analysis shows that non-linear fracture mechanics can be effectively applied to investigate concrete fracture. Also, comparisons between the analyses of crack propagation and stress redistribution obtained using the finite element analysis was in good agreement with tests found in the literature.


Sign in / Sign up

Export Citation Format

Share Document