Evaluating and modelling the hydrological and erosive behaviour of an olive orchard microcatchment under no-tillage with bare soil in Spain

2009 ◽  
Vol 34 (5) ◽  
pp. 738-751 ◽  
Author(s):  
E. V. Taguas ◽  
J. L. Ayuso ◽  
A. Peña ◽  
Y. Yuan ◽  
R. Pérez
Keyword(s):  
HortScience ◽  
2004 ◽  
Vol 39 (6) ◽  
pp. 1262-1266 ◽  
Author(s):  
Lidia M. Carrera ◽  
Aref A. Abdul-Baki ◽  
John R. Teasdale

Cover crops combined with conservation tillage practices can minimize chemical inputs and improve soil quality, soil water-holding capacity, weed suppression and crop yields. No-tillage production of sweet corn (Zea mays var. `Silver Queen') was studied for 2 years at the USDA Beltsville Agricultural Research Center, Md., to determine cover crop management practices that maximize yield and suppress weeds. Cover crop treatments were hairy vetch (Vicia villosa Roth), rye (Secale cereale L.) and hairy vetch mixture, and bare soil (no cover crop). There were three cover crop killing methods: mowing, rolling or contact herbicide paraquat. All plots were treated with or without atrazine and metolachlor after planting. There was a 23% reduction in sweet corn plant population in the rye-hairy vetch mixture compared to bare soil. Averaged over both years, sweet corn yield in hairy vetch treatments was 43% greater than in bare soil, whereas yield in the rye-hairy vetch mixture was 30% greater than in bare soil. There were no significant main effects of kill method or significant interactions between kill method and cover crop on yield. Sweet corn yields were not different for hairy vetch or rye-hairy vetch treatments with or without atrazine and metolachlor. However, yield in bare soil without the herbicides atrazine and metolachor were reduced by 63% compared to bare soil with these herbicides. When no atrazine and metolachlor were applied, weed biomass was reduced in cover crops compared to the bare soil. Regression analysis showed greater yield loss per unit of weed biomass for bare soil than for the vetch or rye-hairy vetch mixture. This analysis suggests that cover crops increased sweet corn yield in the absence of atrazine and metolachlor not only by reducing weed biomass, but also by increasing the competitiveness of corn to weeds at any given biomass.


2019 ◽  
Author(s):  
Ghizlane Aouade ◽  
Lionel Jarlan ◽  
Jamal Ezzahar ◽  
Salah Er-raki ◽  
Adrien Napoly ◽  
...  

Abstract. The main objective of this work is to question the representation of the energy budget in surface–vegetation–atmosphere transfer (SVAT) models for the prediction of the convective fluxes in the case of irrigated crops with a complex structure (row) and under strong transient hydric regimes due to irrigation. To this objective, the Interaction Soil–Biosphere–Atmosphere (ISBA-A-gs) based on a composite energy budget (named hereafter ISBA-1P for 1 patch) is compared to the new multiple energy balance (MEB) version of ISBA using two representations of the canopy energy budget: a coupled approach (ISBA-MEB) where the vegetation layer is located above the soil and a patch representation corresponding to two-adjacent uncoupled source schemes (ISBA-2P for 2 patches). The evaluation is performed over a winter wheat field, taken as an example of homogeneous canopy and on a more complex open olive orchard. Continuous observations of evapotranspiration (ET) with Eddy covariance system, soil evaporation (E) and plant transpiration (Tr) with Sapflow and isotopic methods were used to evaluate the three representations. A preliminary sensitivity analyses showed a strong sensitivity to the parameters related to turbulence in the canopy introduced in the new ISBA-MEB version. The ability of the single and dual-source configuration to reproduce the composite soil-vegetation heat fluxes was very similar: the RMSE differences between ISBA-1P, -2P and -MEB did not exceed 10 W/m2 for the latent heat flux. These results showed that a composite energy balance on homogeneous covers is sufficient to reproduce the total convective fluxes. By contrast, differences were highlighted on the partition of ET. In particular, the ISBA-2P version showed an over-estimation of soil evaporation of about 20 % because of a direct exposition to incoming solar radiation and because there is no root extraction for the bare soil patch with regards to –MEB and -1P representations. By contrast, the dual source configurations including both the uncoupled (ISBA-2P) and the coupled (ISBA-MEB) representations outperformed the single source version (ISBA-1P) with slightly better results for ISBA-MEB in predicting both total heat fluxes and evapotranspiration partition over the moderately open canopy of the Olive orchard site. Concerning plant transpiration in particular, the coupled approach ISBA-MEB provides better results than ISBA-1P and, to a lesser extent ISBA-2P with RMSEs of 1.60, 0.90, 0.70 mm/day and R2 of 0.43, 0.69 and 0.70 for ISBA-1P, -2P and MEB respectively. In addition, it is shown that the acceptable predictions of composite convective fluxes by ISBA-2P for the Olive orchard are obtained for the wrong reasons as neither of the two patches is in agreement with the observations because of a bad spatial distribution of the roots and of a lack of incoming radiation screening for the bare soil patch. This work shows that composite convection fluxes predicted by the SURFEX platform as well as partition of evapotranspiration in a highly transient regime due to irrigation is improved for moderately open tree canopies by the new coupled dual-source ISBA-MEB model. It also points out the need for further local scale evaluation on different crops of various geometry (more open rainfed or denser intensive olive orchard) to provide adequate parameterization to global data base such as ECOCLIMAP-II in the view of a global application of the ISBA-MEB model.


Soil Systems ◽  
2019 ◽  
Vol 3 (3) ◽  
pp. 50 ◽  
Author(s):  
Patricia Dörr de Quadros ◽  
Adam R. Martin ◽  
Kateryna Zhalnina ◽  
Raquel Dias ◽  
Adriana Giongo ◽  
...  

There are multiple mechanisms by which enhanced diversity of plant communities improves soil structure and function. One critical pathway mediating this relationship is through changes to soil prokaryotic communities. Here, nine different cropping systems were studied to evaluate how legume and grass cover crops influence soil fertility and microbial communities in a maize-based no tillage system. The soil’s bacterial and archaeal communities were sequenced (Illumina GAIIx, 12 replicates for treatment) and correlated with eight different soil features. The microbial community composition differed widely between planting treatments, with three primary “community types” emerging in multivariate space: (1) A community type associated with bare soil linked with low P, low pH, and high aluminum [Al]; (2) a community type associated with Lablab beans linked with high soil N, total organic carbon and other base cation concentrations, and high pH; and (3) a community type of all other non-lablab planting arrangements linked with higher soil P (relative to bare soil), but lower soil fertility (N and base cations). Lablab-based arrangements also expressed the highest microbial richness and alpha diversity. The inclusion of Lablab in maize-based cropping systems represents a potential alternative to reduce the use of chemical fertilizers and increase the chemical and biological quality in agricultural soils under the no-tillage system.


Agronomy ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 812
Author(s):  
Manuel González-Rosado ◽  
Luis Parras-Alcántara ◽  
Jesús Aguilera-Huertas ◽  
Beatriz Lozano-García

Olive groves are one of the most important agro-systems in the Mediterranean basin, and the Andalusia region produces the highest quantity of olive oil in Europe. The aim of this work was to evaluate the long-term (15 years) influence of two management practices in olive orchards—conventional tillage (CT) and no tillage with bare soil and herbicide application (NT + H)—on soil physical properties, infiltration capacity, erosion rates, and soil productivity. In addition, the short-term (2 years) influence of no tillage with cover crop management (NT-CC) on these parameters was also assessed. In the study area, CT and NT + H management practices showed unsustainable erosion values, 9.82 and 13.88 Mg ha−1 year−1, respectively, while NT-CC inclusion decreased the erosion rates (2.06 Mg ha−1 year−1). The implementation of NT-CC not only reduced erosion rates but also caused a change in the trend of soil productivity loss observed under CT and NT + H. In this sense, NT-CC showed a positive influence on soil quality. However, tillage removal led to a significant reduction in the infiltration capacity of soils under NT + H and NT-CC, which will be a serious handicap for water storage in an environment with continuous processes of water deficit.


2013 ◽  
Vol 37 (6) ◽  
pp. 1689-1698 ◽  
Author(s):  
Mastrângello Enívar Lanzanova ◽  
Flávio Luiz Foletto Eltz ◽  
Rodrigo da Silveira Nicoloso ◽  
Elemar Antonino Cassol ◽  
Ildegardis Bertol ◽  
...  

Soil erosion is one of the chief causes of agricultural land degradation. Practices of conservation agriculture, such as no-tillage and cover crops, are the key strategies of soil erosion control. In a long-term experiment on a Typic Paleudalf, we evaluated the temporal changes of soil loss and water runoff rates promoted by the transition from conventional to no-tillage systems in the treatments: bare soil (BS); grassland (GL); winter fallow (WF); intercrop maize and velvet bean (M+VB); intercrop maize and jack bean (M+JB); forage radish as winter cover crop (FR); and winter cover crop consortium ryegrass - common vetch (RG+CV). Intensive soil tillage induced higher soil losses and water runoff rates; these effects persisted for up to three years after the adoption of no-tillage. The planting of cover crops resulted in a faster decrease of soil and water loss rates in the first years after conversion from conventional to no-tillage than to winter fallow. The association of no-tillage with cover crops promoted progressive soil stabilization; after three years, soil losses were similar and water runoff was lower than from grassland soil. In the treatments of cropping systems with cover crops, soil losses were reduced by 99.7 and 66.7 %, compared to bare soil and winter fallow, while the water losses were reduced by 96.8 and 71.8 % in relation to the same treatments, respectively.


HortScience ◽  
1990 ◽  
Vol 25 (9) ◽  
pp. 1158c-1158
Author(s):  
B. W. Roberts ◽  
Bob Cartwright

Raised beds approximately 20 cm tall by 76 cm wide were formed on 1.8 m centers in the spring of 1988 and 1989. Beds were either left bare or seeded with rye (Secale cereale) or hairy vetch (Vicia villosa) at 84 or 45 kg ha-1 respectively. All plots were sprayed with glyphosate in August of each year. In 1988, a 30 cm strip was tilled in the center of each bed. In 1989, there was no tillage or mowing.The design was a randomized complete block with four levels of nitrogen (45, 90, 134, and 179 kg ha-1) at each soil cover. Broccoli seedlings were transplanted in double rows on 30 cm spacings into the plots each year in late August.Height of the raised beds was maintained with both rye and vetch. Broccoli yields were highest in the bare soil treatments In 1988, the lowest yield was with vetch, and in 1989 the lowest yield was with rye. There was a positive linear yield response to nitrogen. The number of heads harvested did not differ significantly between soil covers


Land ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 55
Author(s):  
Felice Sartori ◽  
Ilaria Piccoli ◽  
Riccardo Polese ◽  
Antonio Berti

The evaluation of the effects of conservation agriculture during the transition from conventional tillage to no-tillage requires numerous indicators to be considered. For this purpose, we monitored changes in a multi-parameter dataset during a three-year experiment that combined three tillage intensities (conventional tillage—CT; minimum tillage—MT; and no tillage—NT) with three soil covering managements (tillage radish cover crop, winter wheat cover crop and bare soil). Using a multivariate analysis, we developed a Relative Sustainability Index (RSI) based on 11 physical (e.g., bulk density and penetration resistance), chemical (e.g., soil organic carbon and pH) and biological soil properties (e.g., earthworm density) to evaluate cropping systems sustainability. The RSI was most affected by tillage intensity showing higher RSI values (i.e., better performances) in reduced tillage systems. Specifically, the RSI under NT was 42% greater than that of CT and 13% greater than that of MT. Soil covering had little impact on the RSI. Among the tested parameters, the RSI was increased most by saturated hydraulic conductivity (+193%) and earthworm density (+339%) across CT and NT treatments.to. Our results suggest that conservation agriculture and, particularly, reduced tillage systems, have the potential to increase farm environmental and agronomic sustainability.


2020 ◽  
Author(s):  
Wafa Chebbi ◽  
Vincent Rivalland ◽  
Pascal Fanise ◽  
Aaron Boone ◽  
Lionel Jarlan ◽  
...  

Abstract. In the Mediterranean basin, olive orchards occupy a large fraction of agricultural lands due to its sustainability to harsh conditions, drought in particular. Since most modeling tools to simulate vegetation functioning are not meant to represent very sparse crops (i.e., rainfed olive trees have a vegetation fraction cover ranging from 2 to 15 %), computing the water needs and the vulnerability to drought of an olive orchard is a challenge. There is indeed a very high contribution of the bare soil signal to the total fluxes, and it is difficult to decipher the contribution of the tree from that of the entire surface. In this context, in an attempt to study the olive tree hydrological functioning at field scale (38 ha), an experimental site was setup and a Soil–Vegetation–Atmosphere (SVAT) model has been applied. To represent the orchard soil–plant–atmosphere interactions, a simulation with default settings was assessed using parameters derived from both the literature and ground measurements. In this default configuration, neither the predicted actual nor the potential transpiration could reach the observed transpiration acquired during the wet season (R2 = 0.67, the Root Mean Square Error (RMSE) = 5.63 mm week−1). We show that the model fails to reproduce the relevant leaf surface that transpires. To address this issue and to improve the estimate of the year-to-year variability of the olive tree transpiration, we propose guidance on how a SVAT model can be modified to more appropriately represent the hydrological functioning of a sparse orchard. Once the tree transpiration is accurately simulated (R2 = 0.93, RMSE = 1.62 mm week−1), we evaluated whether the fully coupled (single patch) or a fully uncoupled (two patch) system better reproduced the total fluxes and their components. Owing to the independent characteristics of the soil columns inherent in the assumption of the 2-patch version, the bare soil column shows a deficiency if the topsoil root extraction is not accounted for. We deduced that we cannot accurately reproduce the soil evaporation in this configuration. This study open perspectives for a better representation of water fluxes over sparse tree crops into both hydrological and SVAT models.


2017 ◽  
pp. 44-54
Author(s):  
Zenaida Gonzaga ◽  
Warren Obeda ◽  
Ana Linda Gorme ◽  
Jessie Rom ◽  
Oscar Abrantes ◽  
...  

Okra or Lady’s finger, botanically known as Abelmoschus esculentus (L.) Moench, is a tropical and sub-tropical indigenous vegetable crop commonly grown for its fibrous, slimy, and nutritious fruits and consumed by all classes of population. It has also several medicinal and economic values. Despite its many uses and potential value, its importance is under estimated, under-utilized, and considered a minor crop and little attention was paid to its improvement. The study was conducted to evaluate the effects of different planting densities and mulching materials on the growth and yield of okra grown in slightly sloping area in the marginal uplands in Sta. Rita, Samar, Philippines. A split-plot experiment was set up with planting density as main plot and the different mulching materials as the sub-plot which were: unmulched or bare soil, rice straw, rice hull, hagonoy and plastic mulch. Planting density did not significantly affect the growth and yield of okra. Regardless ofthe mulching materials used, mulched plants were taller and yielded higher compared to unmulched plants. Moreover, the use of plastic mulch resulted to the highest total fruit yield. The results indicate the potential of mulching in increasing yield and thus profitability of okra production under marginal upland conditions.


Author(s):  
Tayeb Sitayeb ◽  
Ishak Belabbes

Abstract Landscape dynamics is the result of interactions between social systems and the environment, these systems evolving significantly over time. climatic conditions and biophysical phenomena are the main factors of landscape dynamics. Also, currently man is responsible for most changes affecting natural ecosystems. The objective of this work is to study the dynamics of a typical landscape of western Algeria in time and space, and to map the distribution of vegetation groups constitute the vegetation cover of this ecosystem. as well as using a method of monitoring the state of a fragile ecosystem by remote sensing to understand the processes of changes in this area. The steppe constitutes a large arid area, with little relief, covered with low and sparse vegetation. it lies between the annual isohyets of 100 to 400 mm, subjected to a very old human exploitation with an activity of extensive breeding of sheep, goats, and camels. Landsat satellite data were used to mapping vegetation groups in the Mecheria Steppe at a scale of 1: 300,000. Then, a comparison was made between the two maps obtained by a classification of Landsat-8 sensor Operational Land Imager (OLI) acquired on March 18, 2014, and Landsat-5 sensor Thematic Mapper (TM) acquired on April 25, 1987. The results obtained show the main changes affecting the natural distribution of steppe species, a strong change in land occupied by the Stipa tenacissima steppe with 65% of change, this steppe is replaced by Thymelaea microphylla, Salsola vermiculata, lygeum spartum and Peganum harmala steppe. an absence from the steppe Artemisia herba-alba that has also been replaced by the same previous steppes species. The groups with Quercus ilex and Juniperus phoenicea are characterized by a strong regression that was lost 60% of its global surface and transformed by steppe to stipa tenacissima and bare soil.


Sign in / Sign up

Export Citation Format

Share Document