Ecological water requirement accounting of the main stream of the Yellow River from the perspective of habitat conservation

2020 ◽  
Author(s):  
Fen Zhao ◽  
Chunhui Li ◽  
Wenxiu Shang ◽  
Xiaokang Zheng ◽  
Zoe Li ◽  
...  
Author(s):  
Shibao Lu ◽  
Wenting Cai ◽  
Wei Shao ◽  
Farhad Taghizadeh-Hesary ◽  
Muhammad Faisal ◽  
...  

Deterioration of the ecological environment in the upper and middle reaches of the Yellow River in China substantially impacts the growth and development of aquatic organisms in the drainage basin. This paper builds a conceptual model by applying flow components and fish ecological requirements relation with a relevant object of main fish in the upper and middle reaches of the Yellow River. The paper utilized the flow restoration method by employing the River2D model (two-dimensional model of river hydrodynamics and fish habitat), and a one-dimensional hydrodynamics HEC-RAS (hydrologic engineering center’s-river analysis system). The calculation result showed that the runoff condition required for Silurus lanzhouensis survival is that the monthly lowest flow in a year is 150 m3·s−1, and the lowest flow for suitable flow from April to October is 150 m3·s−1, and 300 m3·s−1 from November to March. The research result is closer to the actual condition and has more outstanding operability. Meanwhile, the results proposed the coupling method of ecological water requirement for the mainstream of the Yellow River. Moreover, the results portrayed the ecological flow process according to the upper envelope of minimum and maximum ecological water requirements of each fracture surface. It is regarded that the ecological flow process is deemed as the initial value of the reservoir regulation model.


2019 ◽  
Vol 11 (17) ◽  
pp. 4680 ◽  
Author(s):  
Lei Liu ◽  
Jianqin Ma ◽  
Xiuping Hao ◽  
Qingyun Li

To analyze the water-resource limitations for crops in irrigation districts along the lower reach of the Yellow River, we used the single-crop coefficient method provided by FAO-56 to analyze crop water demand (CWD) and irrigation water requirement (IWR) for the main crops (winter wheat, summer maize, and cotton) from 1971 to 2015. The impact of climate threats on IWR was then quantified based on the standardized precipitation evapotranspiration index (SPEI), following which the conflicts between water demand and water supply were analyzed. The results show that about 75.4% of the total annual IWR volume is concentrated from March to June. Winter wheat is the largest water consumer; it used an average of 67.9% of the total IWR volume. The study area faced severe water scarcity, and severe water deficits occurred mainly between March and June, which is consistent with the occurrence of drought. With the runoff from the Yellow River Basin further decreasing in the future, the water supply is expected to become more limited. IWR is negatively correlated with the SPEI. Based on the relationship between SPEI and IWR, the water allocation for irrigation can be planned at different timescales to meet the CWD of different crops.


Author(s):  
Z. Li ◽  
T. Cheng ◽  
H. Song ◽  
Z. Li ◽  
J. Yu

Abstract. Using the monthly precipitation series of 32 meteorological stations in the Yellow River basin from 1951 to 2003, the precipitation cycles were discussed using the Maximum Entropy Method (MEM), the spatial distribution of the precipitation cycles were analysed, and the possible driving factors of the cycles investigated. The results show that the precipitation in the Yellow River has decadal (60a), inter-decadal (25a and 14a) and inter-annual cycles (9a and 3a). The main oscillations over the whole basin are 3a and 9a. There are clearer inter-decadal variations in the riverhead area with much greater water resources, and north of the region of LanHe main stream. The decadal signals are detected in the inner area with less precipitation and Wei River basin. These differences are possibly related to some physical processes, such as the mutual action of sea and atmosphere, and solar activities.


Atmosphere ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 1296
Author(s):  
Lili Pu ◽  
Xingpeng Chen ◽  
Chengpeng Lu ◽  
Li Jiang ◽  
Binbin Ma ◽  
...  

In 2021, The People’s Republic of China proposed goals for peaking carbon dioxide emissions before 2030 and carbon neutrality before 2060, in the 15 counties (districts) of the Main Stream Area of the Yellow River Basin in Gansu that plays an important role in ecological protection and green development. Next the CO2 equivalents were converted according to the IPCC2 standard, the total agricultural GHG emissions was calculated, the relationship with the agricultural output value was analyzed, and the discretization of the space was analyzed by the coefficient of variation and standard deviation. Firstly, the total agricultural GHG emissions in 15 counties (districts) of the Main Stream Area of the Yellow River Basin increased 55.54% in 2000–2019, and 2.35% annually, roughly divided into three stages: the rapid growth period (2000–2008), the slow decline period (2009–2014) and the rapid decline period (2015–2019). The economic efficiency is significantly improved, with an average annual decline of 6.49%, roughly divided into three stages: the slow-descent stage (2000–2004), the period of slow-growth stage (2005–2008) and the period of fast-decline (2009–2019). Secondly, based on the characteristics of the total GHG emissions, Maqu County has the largest GHG emissions increase, from 26.8842 kt in 2000 to 38.9603 kt, in 2019, an increase of 44.92%, while the smallest GHG emissions, in Anning District, decreased 87.33% from 111 t in 2000 to 14.1 t in 2019; In the rate of increase in the total GHG emissions, Dongxiang County had the largest rate of increase from 2000 to 2019, an increase of 160.28% and an average annual increase of 4.90%. The smallest rate of decrease in GHG emissions was seen in Chengguan District, where they decreased 92.11% from 2000 to 2019, an average annual decrease of 11.93%. The characteristics of agricultural GHG emissions intensity is a significant declining trending and agricultural production efficiency has been significantly improved. Finally, to provide a basis for the formulation of differentiated agricultural energy conservation and emissions reduction policies, reduce agricultural GHG emissions intensity and reduce the use efficiency of resources by formulating differentiated emission targets, tasks and incentive measures.


2005 ◽  
Vol 60 (5) ◽  
pp. 1017-1020
Author(s):  
Satoshi NAKANO ◽  
Nobuhiro MATSUOKA ◽  
Makio KAMICHIKA ◽  
Guirui YU ◽  
Hisashi KON ◽  
...  

Water ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1103
Author(s):  
Jianxiu Hao ◽  
Jun Ren ◽  
Hongbing Fang ◽  
Ling Tao

In order to determine the key influencing factors, risk areas, and source pathways of heavy metals in the sediment of the Yellow River, 37 samples were collected in the surface sediment (0–5 cm) of the Inner Mongolia section of the Yellow River main stream for the determination of heavy metals copper (Cu), nickel (Ni), zinc (Zn), chromium (Cr), lead (Pb), and cadmium (Cd). Based on the geographical detector model (GDM) and ArcGIS 10.2 software, this paper selected 6 heavy metals and 15 influencing factors, including 8 natural factors and 7 anthropogenic factors, to detect key influencing factors, risk areas, and sources of heavy metals. The results showed that: (1) The average contents of heavy metals Cr and Cd in the sediments exceeded the average value in soil, the world average concentration in the shales, and the first-level standard of soil environmental quality in China, and they were the main risk metals; (2) Vegetation coverage (VC) was the largest influencing factor for the spatial distribution of heavy metals in the sediment, followed by per capita income (PI), and land use type (LUT) and road network density (RD) were smaller influencing factors. The interactions of the factors were enhanced; (3) The Wuhai section for a risk area was mainly polluted by Cd and Pb, which were caused by atmospheric deposition and industrial emission. The Baotou section for a risk area was mainly polluted by Cr, which mainly originated from river transportation and industrial discharge. The conclusions can provide a scientific basis for the environmental protection and management of the different areas in the Inner Mongolia section of the Yellow River.


2018 ◽  
Vol 14 (1) ◽  
pp. 245-254 ◽  
Author(s):  
Yang LI ◽  
◽  
Zhixiang XIE ◽  
Fen QIN ◽  
Yaochen QIN ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document