In-Situ (U-Th)/He Dating of Martian Apatites: Low-Temperature Thermal Processes in the Late Amazonian Martian Regolith Recorded by NWA 7034

2021 ◽  
Author(s):  
Christopher McDonald ◽  
Matthijs van Soest ◽  
Kip Hodges ◽  
Jemma Davidson
Author(s):  
F. H. Louchet ◽  
L. P. Kubin

Experiments have been carried out on the 3 MeV electron microscope in Toulouse. The low temperature straining holder has been previously described Images given by an image intensifier are recorded on magnetic tape.The microtensile niobium samples are cut in a plane with the two operative slip directions [111] and lying in the foil plane. The tensile axis is near [011].Our results concern:- The transition temperature of niobium near 220 K: at this temperature and below an increasing difference appears between the mobilities of the screw and edge portions of dislocations loops. Source operation and interactions between screw dislocations of different slip system have been recorded.


Author(s):  
D. A. Smith

The nucleation and growth processes which lead to the formation of a thin film are particularly amenable to investigation by transmission electron microscopy either in situ or subsequent to deposition. In situ studies have enabled the observation of island nucleation and growth, together with addition of atoms to surface steps. This paper is concerned with post-deposition crystallization of amorphous alloys. It will be argued that the processes occurring during low temperature deposition of one component systems are related but the evidence is mainly indirect. Amorphous films result when the deposition conditions such as low temperature or the presence of impurities (intentional or unintentional) preclude the atomic mobility necessary for crystallization. Representative examples of this behavior are CVD silicon grown below about 670°C, metalloids, such as antimony deposited at room temperature, binary alloys or compounds such as Cu-Ag or Cr O2, respectively. Elemental metals are not stable in the amorphous state.


Catalysts ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 618
Author(s):  
Huan Du ◽  
Zhitao Han ◽  
Xitian Wu ◽  
Chenglong Li ◽  
Yu Gao ◽  
...  

Er-modified FeMn/TiO2 catalysts were prepared through the wet impregnation method, and their NH3-SCR activities were tested. The results showed that Er modification could obviously promote SO2 resistance of FeMn/TiO2 catalysts at a low temperature. The promoting effect and mechanism were explored in detail using various techniques, such as BET, XRD, H2-TPR, XPS, TG, and in-situ DRIFTS. The characterization results indicated that Er modification on FeMn/TiO2 catalysts could increase the Mn4+ concentration and surface chemisorbed labile oxygen ratio, which was favorable for NO oxidation to NO2, further accelerating low-temperature SCR activity through the “fast SCR” reaction. As fast SCR reaction could accelerate the consumption of adsorbed NH3 species, it would benefit to restrain the competitive adsorption of SO2 and limit the reaction between adsorbed SO2 and NH3 species. XPS results indicated that ammonium sulfates and Mn sulfates formed were found on Er-modified FeMn/TiO2 catalyst surface seemed much less than those on FeMn/TiO2 catalyst surface, suggested that Er modification was helpful for reducing the generation or deposition of sulfate salts on the catalyst surface. According to in-situ DRIFTS the results of, the presence of SO2 in feeding gas imposed a stronger impact on the NO adsorption than NH3 adsorption on Lewis acid sites of Er-modified FeMn/TiO2 catalysts, gradually making NH3-SCR reaction to proceed in E–R mechanism rather than L–H mechanism. DRIFTS.


2021 ◽  
Vol 13 (8) ◽  
pp. 4591
Author(s):  
Shuanglei Huang ◽  
Daishe Wu

The tremendous input of ammonium and rare earth element (REE) ions released by the enormous consumption of (NH4)2SO4 in in situ leaching for ion-adsorption RE mining caused serious ground and surface water contamination. Anaerobic ammonium oxidation (anammox) was a sustainable in situ technology that can reduce this nitrogen pollution. In this research, in situ, semi in situ, and ex situ method of inoculation that included low-concentration (0.02 mg·L−1) and high-concentration (0.10 mg·L−1) lanthanum (La)(III) were adopted to explore effective start-up strategies for starting up anammox reactors seeded with activated sludge and anammox sludge. The reactors were refrigerated for 30 days at 4 °C to investigate the effects of La(III) during a period of low-temperature. The results showed that the in situ and semi in situ enrichment strategies with the addition of La(III) at a low-concentration La(III) addition (0.02 mg·L−1) reduced the length of time required to reactivate the sludge until it reached a state of stable anammox activity and high nitrogen removal efficiency by 60–71 days. The addition of La(III) promoted the formation of sludge floc with a compact structure that enabled it to resist the adverse effects of low temperature and so to maintain a high abundance of AnAOB and microbacterial community diversity of sludge during refrigeration period. The addition of La(III) at a high concentration caused the cellular percentage of AnAOB to decrease from 54.60 ± 6.19% to 17.35 ± 6.69% during the enrichment and reduced nitrogen removal efficiency to an unrecoverable level to post-refrigeration.


1992 ◽  
Vol 259 ◽  
Author(s):  
Selmer S. Wong ◽  
Shouleh Nikzad ◽  
Channing C. Ahn ◽  
Aimee L. Smith ◽  
Harry A. Atwater

ABSTRACTWe have employed reflection electron energy loss spectrometry (REELS), a surface chemical analysis technique, in order to analyze contaminant coverages at the submonolayer level during low-temperature in situ cleaning of hydrogen-terminated Si(100). The chemical composition of the surface was analyzed by measurements of the C K, O K and Si L2,3 core loss intensities at various stages of the cleaning. These results were quantified using SiC(100) and SiO2 as reference standards for C and O coverage. Room temperature REELS core loss intensity analysis after sample insertion reveals carbon at fractional monolayer coverage. We have established the REELS detection limit for carbon coverage to be 5±2% of a monolayer. A study of temperature-dependent hydrocarbon desorption from hydrogen-terminated Si(100) reveals the absence of carbon on the surface at temperatures greater than 200°C. This indicates the feasibility of epitaxial growth following an in situ low-temperature cleaning and also indicates the power of REELS as an in situ technique for assessment of surface cleanliness.


2015 ◽  
Vol 284 ◽  
pp. 90-93 ◽  
Author(s):  
Hikmet Cicek ◽  
Ihsan Efeoglu ◽  
Yaşar Totik ◽  
Kadri Vefa Ezirmik ◽  
Ersin Arslan

Sign in / Sign up

Export Citation Format

Share Document