scholarly journals The Effects of Numerical Dissipation on Hurricane Rapid Intensification with Observational Heating

2021 ◽  
Author(s):  
Md Badrul Hasan ◽  
Stephen R. Guimond ◽  
Meilin Yu ◽  
Sohail Reddy ◽  
Francis X Giraldo
2021 ◽  
Author(s):  
MD BADRUL HASAN ◽  
Steve Guimond ◽  
Meilin Yu ◽  
Francis Giraldo ◽  
Sohail Reddy

2021 ◽  
Author(s):  
Md Badrul Hasan ◽  
Stephen R. Guimond ◽  
Meilin Yu ◽  
Sohail Reddy ◽  
Francis X Giraldo

2011 ◽  
Vol 26 (4) ◽  
pp. 579-585 ◽  
Author(s):  
Charles R. Sampson ◽  
John Kaplan ◽  
John A. Knaff ◽  
Mark DeMaria ◽  
Chris A. Sisko

Abstract Rapid intensification (RI) is difficult to forecast, but some progress has been made in developing probabilistic guidance for predicting these events. One such method is the RI index. The RI index is a probabilistic text product available to National Hurricane Center (NHC) forecasters in real time. The RI index gives the probabilities of three intensification rates [25, 30, and 35 kt (24 h)−1; or 12.9, 15.4, and 18.0 m s−1 (24 h)−1] for the 24-h period commencing at the initial forecast time. In this study the authors attempt to develop a deterministic intensity forecast aid from the RI index and, then, implement it as part of a consensus intensity forecast (arithmetic mean of several deterministic intensity forecasts used in operations) that has been shown to generally have lower mean forecast errors than any of its members. The RI aid is constructed using the highest available RI index intensification rate available for probabilities at or above a given probability (i.e., a probability threshold). Results indicate that the higher the probability threshold is, the better the RI aid performs. The RI aid appears to outperform the consensus aids at about the 50% probability threshold. The RI aid also improves forecast errors of operational consensus aids starting with a probability threshold of 30% and reduces negative biases in the forecasts. The authors suggest a 40% threshold for producing the RI aid initially. The 40% threshold is available for approximately 8% of all verifying forecasts, produces approximately 4% reduction in mean forecast errors for the intensity consensus aids, and corrects the negative biases by approximately 15%–20%. In operations, the threshold could be moved up to maximize gains in skill (reducing availability) or moved down to maximize availability (reducing gains in skill).


SOLA ◽  
2020 ◽  
Vol 16 (0) ◽  
pp. 1-5 ◽  
Author(s):  
Udai Shimada ◽  
Munehiko Yamaguchi ◽  
Shuuji Nishimura

Atmosphere ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 284
Author(s):  
Evan A. Kalina ◽  
Mrinal K. Biswas ◽  
Jun A. Zhang ◽  
Kathryn M. Newman

The intensity and structure of simulated tropical cyclones (TCs) are known to be sensitive to the planetary boundary layer (PBL) parameterization in numerical weather prediction models. In this paper, we use an idealized version of the Hurricane Weather Research and Forecast system (HWRF) with constant sea-surface temperature (SST) to examine how the configuration of the PBL scheme used in the operational HWRF affects TC intensity change (including rapid intensification) and structure. The configuration changes explored in this study include disabling non-local vertical mixing, changing the coefficients in the stability functions for momentum and heat, and directly modifying the Prandtl number (Pr), which controls the ratio of momentum to heat and moisture exchange in the PBL. Relative to the control simulation, disabling non-local mixing produced a ~15% larger storm that intensified more gradually, while changing the coefficient values used in the stability functions had little effect. Varying Pr within the PBL had the greatest impact, with the largest Pr (~1.6 versus ~0.8) associated with more rapid intensification (~38 versus 29 m s−1 per day) but a 5–10 m s−1 weaker intensity after the initial period of strengthening. This seemingly paradoxical result is likely due to a decrease in the radius of maximum wind (~15 versus 20 km), but smaller enthalpy fluxes, in simulated storms with larger Pr. These results underscore the importance of measuring the vertical eddy diffusivities of momentum, heat, and moisture under high-wind, open-ocean conditions to reduce uncertainty in Pr in the TC PBL.


2021 ◽  
Vol 11 (4) ◽  
pp. 1932
Author(s):  
Weixuan Wang ◽  
Qinyan Xing ◽  
Qinghao Yang

Based on the newly proposed generalized Galerkin weak form (GGW) method, a two-step time integration method with controllable numerical dissipation is presented. In the first sub-step, the GGW method is used, and in the second sub-step, a new parameter is introduced by using the idea of a trapezoidal integral. According to the numerical analysis, it can be concluded that this method is unconditionally stable and its numerical damping is controllable with the change in introduced parameters. Compared with the GGW method, this two-step scheme avoids the fast numerical dissipation in a low-frequency range. To highlight the performance of the proposed method, some numerical problems are presented and illustrated which show that this method possesses superior accuracy, stability and efficiency compared with conventional trapezoidal rule, the Wilson method, and the Bathe method. High accuracy in a low-frequency range and controllable numerical dissipation in a high-frequency range are both the merits of the method.


Atmosphere ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 683
Author(s):  
Mark DeMaria ◽  
James L. Franklin ◽  
Matthew J. Onderlinde ◽  
John Kaplan

Although some recent progress has been made in operational tropical cyclone (TC) intensity forecasting, the prediction of rapid intensification (RI) remains a challenging problem. To document RI forecast progress, deterministic and probabilistic operational intensity models used by the National Hurricane Center (NHC) are briefly reviewed. Results show that none of the deterministic models had RI utility from 1991 to about 2015 due to very low probability of detection, very high false alarm ratio, or both. Some ability to forecast RI has emerged since 2015, with dynamical models being the best guidance for the Atlantic and statistical models the best RI guidance for the eastern North Pacific. The first probabilistic RI guidance became available in 2001, with several upgrades since then leading to modest skill in recent years. A tool introduced in 2018 (DTOPS) is currently the most skillful among NHC’s probabilistic RI guidance. To measure programmatic progress in forecasting RI, the Hurricane Forecast Improvement Program has introduced a new RI metric that uses the traditional mean absolute error but restricts the sample to only those cases where RI occurred in the verifying best track or was forecast. By this metric, RI forecasts have improved by ~20–25% since the 2015–2017 baseline period.


Author(s):  
Kenny W. Q. Low ◽  
Chun Hean Lee ◽  
Antonio J. Gil ◽  
Jibran Haider ◽  
Javier Bonet

AbstractThis paper presents a new Smooth Particle Hydrodynamics computational framework for the solution of inviscid free surface flow problems. The formulation is based on the Total Lagrangian description of a system of first-order conservation laws written in terms of the linear momentum and the Jacobian of the deformation. One of the aims of this paper is to explore the use of Total Lagrangian description in the case of large deformations but without topological changes. In this case, the evaluation of spatial integrals is carried out with respect to the initial undeformed configuration, yielding an extremely efficient formulation where the need for continuous particle neighbouring search is completely circumvented. To guarantee stability from the SPH discretisation point of view, consistently derived Riemann-based numerical dissipation is suitably introduced where global numerical entropy production is demonstrated via a novel technique in terms of the time rate of the Hamiltonian of the system. Since the kernel derivatives presented in this work are fixed in the reference configuration, the non-physical clumping mechanism is completely removed. To fulfil conservation of the global angular momentum, a posteriori (least-squares) projection procedure is introduced. Finally, a wide spectrum of dedicated prototype problems is thoroughly examined. Through these tests, the SPH methodology overcomes by construction a number of persistent numerical drawbacks (e.g. hour-glassing, pressure instability, global conservation and/or completeness issues) commonly found in SPH literature, without resorting to the use of any ad-hoc user-defined artificial stabilisation parameters. Crucially, the overall SPH algorithm yields equal second order of convergence for both velocities and pressure.


2018 ◽  
Vol 19 (7) ◽  
pp. e845
Author(s):  
Xiba Tang ◽  
Fan Ping ◽  
Shuai Yang ◽  
Mengxia Li ◽  
Jing Peng

Symmetry ◽  
2018 ◽  
Vol 10 (10) ◽  
pp. 502 ◽  
Author(s):  
Jong-Hyun Kim ◽  
Wook Kim ◽  
Young Kim ◽  
Jung Lee

When we perform particle-based water simulation, water particles are often increased dramatically because of particle splitting around breaking holes to maintain the thin fluid sheets. Because most of the existing approaches do not consider the volume of the water particles, the water particles must have a very low mass to satisfy the law of the conservation of mass. This phenomenon smears the motion of the water, which would otherwise result in splashing, thereby resulting in artifacts such as numerical dissipation. Thus, we propose a new fluid-implicit, particle-based framework for maintaining and representing the thin sheets and turbulent flows of water. After splitting the water particles, the proposed method uses the ghost density and ghost mass to redistribute the difference in mass based on the volume of the water particles. Next, small-scale turbulent flows are formed in local regions and transferred in a smooth manner to the global flow field. Our results show us the turbulence details as well as the thin sheets of water, thereby obtaining an aesthetically pleasing improvement compared with existing methods.


Sign in / Sign up

Export Citation Format

Share Document