scholarly journals The uncertainty of the calculative value of the volumetric flow rate in open channels

2021 ◽  
Author(s):  
Leszek Opyrchał ◽  
Aleksandra Bąk
1987 ◽  
Vol 52 (2) ◽  
pp. 357-371 ◽  
Author(s):  
František Rieger

This paper summarizes the present state of the theory of calculation of the pumping capacity of screw rotors. The calculation starts from the equation for the volumetric flow rate of the flow between two unconfined plates modified by correction coefficients obtained from the relationships for the flow rate in simpler geometrical configurations to which the screw rotor may be, under certain circumstances, reduced.


Water ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 72
Author(s):  
Suresh Kumar Thappeta ◽  
S. Murty Bhallamudi ◽  
Venu Chandra ◽  
Peter Fiener ◽  
Abul Basar M. Baki

Three-dimensional numerical simulations were performed for different flow rates and various geometrical parameters of step-pools in steep open channels to gain insight into the occurrence of energy loss and its dependence on the flow structure. For a given channel with step-pools, energy loss varied only marginally with increasing flow rate in the nappe and transition flow regimes, while it increased in the skimming regime. Energy loss is positively correlated with the size of the recirculation zone, velocity in the recirculation zone and the vorticity. For the same flow rate, energy loss increased by 31.6% when the horizontal face inclination increased from 2° to 10°, while it decreased by 58.6% when the vertical face inclination increased from 40° to 70°. In a channel with several step-pools, cumulative energy loss is linearly related to the number of step-pools, for nappe and transition flows. However, it is a nonlinear function for skimming flows.


1990 ◽  
Vol 52 (8) ◽  
pp. 615-628 ◽  
Author(s):  
Scott K Rowland ◽  
George PL Walker

1996 ◽  
Vol 118 (1) ◽  
pp. 29-35 ◽  
Author(s):  
K. Minemura ◽  
K. Egashira ◽  
K. Ihara ◽  
H. Furuta ◽  
K. Yamamoto

A turbine flowmeter is employed in this study in connection with offshore oil field development, in order to measure simultaneously both the volumetric flow rates of air-water two-phase mixture. Though a conventional turbine flowmeter is generally used to measure the single-phase volumetric flow rate by obtaining the rotational rotor speed, the method proposed additionally reads the pressure drop across the meter. After the pressure drop and rotor speed measured are correlated as functions of the volumetric flow ratio of the air to the whole fluid and the total volumetric flow rate, both the flow rates are iteratively evaluated with the functions on the premise that the liquid density is known. The evaluated flow rates are confirmed to have adequate accuracy, and thus the applicability of the method to oil fields.


Author(s):  
Shinichi Miura ◽  
Yukihiro Inada ◽  
Yasuhisa Shinmoto ◽  
Haruhiko Ohta

Advance of an electronic technology has caused the increase of heat generation density for semiconductors densely integrated. Thermal management becomes more important, and a cooling system for high heat flux is required. It is extremely effective to such a demand using flow boiling heat transfer because of its high heat removal ability. To develop the cooling system for a large area at high heat flux, the cold plate structure of narrow channels with auxiliary unheated channel for additional liquid supply was devised and confirmed its validity by experiments. A large surface of 150mm in heated length and 30mm in width with grooves of an apex angle of 90 deg, 0.5mm depth and 1mm in pitch was employed. A structure of narrow rectangular heated channel between parallel plates with an unheated auxiliary channel was employed and the heat transfer characteristics were examined by using water for different combinations of gap sizes and volumetric flow rates. Five different liquid distribution modes were tested and their data were compared. The values of CHF larger than 1.9×106W/m2 for gap size of 2mm under mass velocity based on total volumetric flow rate and on the cross section area of main heated channel 720kg/m2s or 1.7×106W/m2 for gap size of 5mm under 290kg/m2s were obtained under total volumetric flow rate 4.5×10−5m3/s regardless of the liquid distribution modes. Under several conditions, the extensions of dry-patches were observed at the upstream location of the main heated channel resulting burnout not at the downstream but at the upstream. High values of CHF larger than 2×106W/m2 were obtained only for gap size of 2mm. The result indicates that higher mass velocity in the main heated channel is more effective for the increase in CHF. It was clarified that there is optimum flow rate distribution to obtain the highest values of CHF. For gap size of 2mm, high heat transfer coefficient as much as 7.4×104W/m2K were obtained at heat flux 1.5×106W/m2 under mass velocity 720kg/m2s based on total volumetric flow rate and on the cross section area of main heated channel. Also to obtain high heat transfer coefficient, it is more useful to supply the cooling liquid from the auxiliary unheated channel for additional liquid supply in the transverse direction perpendicular to the flow in the main heated channel.


2021 ◽  
Vol 65 (1) ◽  
pp. 23-30
Author(s):  
Tiago Costa ◽  
Neslihan Akdeniz

HighlightsDesign characteristics for animal mortality compost cover materials were tested.Compressive stress was applied to simulate the effects of the mortalities on cover materials.The highest permeability was measured for sawdust at 25% moisture content.A linear relationship was found between the volumetric flow rate and the power required to aerate the piles.Abstract. Composting is an aerobic process that relies on natural aeration to maintain proper oxygen levels. Air-filled porosity, mechanical strength, and permeability are among the essential parameters used to optimize the process. This study’s objective was to measure the physical parameters and airflow characteristics of three commonly used cover materials at four moisture levels, which could be used in designing actively aerated swine mortality composting systems. A laboratory-scale experiment was conducted to measure pressure drops across the cover materials as a function of the airflow rate and the material’s moisture content. Compressive stress was applied for 48 h to simulate the impact of swine mortalities on the cover materials. The power required to aerate each material was determined as a function of volumetric flow rate and moisture content. As expected, air-filled porosity and permeability decreased with increasing bulk density and moisture content. The highest average permeability values were measured at 25% moisture content and ranged from 66 × 10-4 to 70 × 10-4 mm2, from 161 × 10-4 to 209 × 10-4 mm2, and from 481 × 10-4 to 586 × 10-4 mm2 for woodchips, ground cornstalks, and sawdust, respectively. For the range of airflow rates tested in this study (0.0025 to 0.0050 m3 s-1 m-2), a linear relationship (R2 = 0.975) was found between the volumetric flow rate (m3 s-1) and the power required to aerate the compost pile (W per 100 kg of swine mortality). Keywords: Airflow, Darcy’s law, Livestock, Modeling, Permeability, Pressure drop.


Author(s):  
Noah Manring ◽  
Christopher Williamson

This paper has been written to develop closed-form equations for describing the theoretical displacement of a check-valve type, digital displacement pump. In theory, the digital displacement pump is used to alter the apparent volumetric displacement of the machine by short circuiting the flow path for reciprocating pistons within the machine that would ordinarily deliver a full volumetric flow rate to the discharge side of the pump. The short circuiting for the pistons is achieved by opening and closing a digital valve connected to each piston chamber at a desired time during the kinematic cycle for each reciprocating piston. Experience with these machines has shown that the expected volumetric displacement for the machine tends to decrease with pressure. This paper presents a theoretical explanation for the reduced volumetric displacement of the pump and quantifies the expected behavior based upon the digital valve command, the residual volume of fluid within a single piston chamber, and the fluid bulk modulus-of-elasticity. In summary, it shown that the apparent volumetric displacement of the machine may be reduced by as much as 10% for high-displacement commands and by as much as 30% for low-displacement commands.


1982 ◽  
Vol 15 (12) ◽  
pp. 458-463 ◽  
Author(s):  
R. S. Medlock

Flow measurement has a long history extending over a period of about 3000 years, but it was only just over 200 years ago that the subject was first studied on a scientific basis and it was only 20 years ago that a surge of new techniques became available. Today there is a wide selection of methods and equipment to enable flow to be measured whether the medium is in the form of a liquid, gas, vapour or solid, or any combination thereof. According to the application, volumetric flow rate can be measured over a range exceeding 10−5m3/h to 106m3/h which in everday terms is equivalent to a cupful per day to the flow of a very large river. The price of a flowmeter can be as small as a few pounds or in excess of £1 million depending on the accuracy and capacity required. References are made to about 50 types of flow metering devices which can be classified into 11 groups.


Sign in / Sign up

Export Citation Format

Share Document