Evaluation of Design Characteristics for Animal Mortality Composting Systems

2021 ◽  
Vol 65 (1) ◽  
pp. 23-30
Author(s):  
Tiago Costa ◽  
Neslihan Akdeniz

HighlightsDesign characteristics for animal mortality compost cover materials were tested.Compressive stress was applied to simulate the effects of the mortalities on cover materials.The highest permeability was measured for sawdust at 25% moisture content.A linear relationship was found between the volumetric flow rate and the power required to aerate the piles.Abstract. Composting is an aerobic process that relies on natural aeration to maintain proper oxygen levels. Air-filled porosity, mechanical strength, and permeability are among the essential parameters used to optimize the process. This study’s objective was to measure the physical parameters and airflow characteristics of three commonly used cover materials at four moisture levels, which could be used in designing actively aerated swine mortality composting systems. A laboratory-scale experiment was conducted to measure pressure drops across the cover materials as a function of the airflow rate and the material’s moisture content. Compressive stress was applied for 48 h to simulate the impact of swine mortalities on the cover materials. The power required to aerate each material was determined as a function of volumetric flow rate and moisture content. As expected, air-filled porosity and permeability decreased with increasing bulk density and moisture content. The highest average permeability values were measured at 25% moisture content and ranged from 66 × 10-4 to 70 × 10-4 mm2, from 161 × 10-4 to 209 × 10-4 mm2, and from 481 × 10-4 to 586 × 10-4 mm2 for woodchips, ground cornstalks, and sawdust, respectively. For the range of airflow rates tested in this study (0.0025 to 0.0050 m3 s-1 m-2), a linear relationship (R2 = 0.975) was found between the volumetric flow rate (m3 s-1) and the power required to aerate the compost pile (W per 100 kg of swine mortality). Keywords: Airflow, Darcy’s law, Livestock, Modeling, Permeability, Pressure drop.

2021 ◽  
Vol 3 (8) ◽  
Author(s):  
Ting Liu ◽  
Gabriel Lodewijks

Abstract Abstract On the basis of the influence of dry season on ship traffic flow, the gathering and dissipating process of ship traffic flow was researched with Greenshields linear flow—density relationship model, the intrinsic relationship between the ship traffic congestion state and traffic wave in the unclosed restricted channel segment was emphatically explored when the ship traffic flow in a tributary channel inflows, and the influence law of multiple traffic waves on the ship traffic flow characteristics in unclosed restricted segment is revealed. On this basis, the expressions of traffic wave speed and direction, dissipation time of queued ships and the number of ships affected were provided, and combined with Monte Carlo method, the ship traffic flow simulation model in the restricted channel segment was built. The simulation results show that in closed restricted channel segment the dissipation time of ships queued is mainly related to the ship traffic flow rate of segments A and C, and the total number of ships affected to the ship traffic flow rate of segment A. And in unclosed restricted channel segment, the dissipation time and the total number of ships affected are also determined by the meeting time of the traffic waves in addition to the ship traffic flow rate of segments. The research results can provide the theoretical support for further studying the ship traffic flow in unclosed restricted channel segment with multiple tributaries Article Highlights The inflow of tributaries' ship traffic flows has an obvious impact on the traffic conditions in the unenclosed restricted channel segment. The interaction and influence between multiple ship traffic waves and the mechanism of generating new traffic waves are explained. The expression of both dissipation time of queued ships and the total number of ships affected in the closed and unclosed restricted channel segment are given.


2020 ◽  
Vol 63 (3) ◽  
pp. 583-595 ◽  
Author(s):  
Kaushik Luthra ◽  
Sammy S. Sadaka

Highlights Fluidized bed drying of rice has several advantages that outweigh its disadvantages. Increasing the drying temperature above 60°C could reduce rice quality. Research related to energy and exergy efficiencies in fluidized bed dryers of rice is needed. Abstract. Rice (Oryza sativa L.) is a staple food for more than half the world’s population. World rice production reached approximately 740 million metric tons (MMT) in 2018 due to the ever-increasing demand driven by population and economic growth. Rice producers face challenges in meeting this demand, especially in developing countries where rice is prone to spoilage if the moisture content is not reduced to a safe level shortly after harvest. Rice producers, particularly in developing countries, typically use conventional drying methods, i.e., sun drying and natural air drying. These methods are time-consuming and environmentally dependent. On the other hand, fluidized bed drying, which is a well established technology, could provide rice producers with an effective drying technique that is quick, practical, affordable, and portable. Several innovative designs for fluidized bed dryers have been developed that could be installed on-farm or off-farm at a reasonable cost. Some studies have mentioned that the main advantage of fluidized bed drying is the increase in drying rate and the reduction of rice spoilage after harvest. Conversely, other studies have raised alarms regarding low rice quality, which is seen as a significant flaw of fluidized bed drying. Due to this lack of consensus, there is a great need to review this drying technology objectively. Therefore, this review article explores fluidized bed drying and details its advantages and disadvantages related to rice drying. It also sheds light on the effects of the operating parameters involved in fluidized bed drying, i.e., rice moisture content, drying temperature, airflow rate, air velocity, drying duration, and tempering duration, on dryer performance and rice quality. Several fluidized bed numerical models are also reviewed and evaluated. Additionally, this review explores the energy and exergy efficiencies of fluidized bed dryers and suggests opportunities for research associated with fluidized bed drying of rice. Keywords: Energy, Exergy, Fluidized bed drying, Fluidized bed modeling, Moisture content, Rice quality, Rough rice, Tempering.


Author(s):  
Diana K. Grauer ◽  
Kirby S. Chapman ◽  
Ali Keshavar

The natural gas transmission industry integrates turbochargers into the engine system to strategically increase airflow for the purpose of decreasing pollutant emissions, such as Nitrogen Oxide (NOX). Regulations are expected to be tightened in the coming years, forcing transmission companies to look past turbochargers for compliance. The solution to further decreasing emissions lies not in further retrofit, but focusing on the physics of the current system. The flow rate physics of the intake and exhaust manifolds impede equal distribution of air from the turbocharger to each cylinder. Imbalance in airflow creates a discontinuity in the trapped equivalence ratio from cylinder to cylinder. The trapped equivalence ratio is directly proportional to NOX production and a function of the fuel flow rate, airflow rate, and, in two-stroke cycle engines, the scavenging efficiency. Only when these three characteristics are balanced cylinder to cylinder will the combustion and the NOX production in each cylinder be equal. The engine NOX production will be disproportionately high if even one cylinder operates less lean relative to the other cylinders. Balancing the NOX production between cylinders can lower the overall NOX production of the engine. This paper reports on an investigation into the transient, compressible flow physics that impact the trapped equivalence ratio. A comprehensive, variable geometry, multi-cylinder Turbocharger-Reciprocating Engine Computer Simulation (T-RECS) has been developed to illustrate the effect of airflow imbalance on an engine. A new model, the Charge Air Integrated Manifold Engine Numerical Simulation (CAIMENS), is a manifold flow model coupled with the T-RECS engine processor that uses an integrated set of fundamental principles to determine the crank angle-resolved pressure, temperature, burned and unburned mass fractions, and gas exchange rates for the cylinder. CAIMENS has the ability to show the transient impact of one cylinder firing on each successive cylinder. The pulsation model also describes the impact of manifold pressure drop on in-cylinder peak pressure and the pressure wave introduced to the intake manifold by uncovering the intake ports. CAIMENS provides the information necessary to quantify the impact of airflow imbalance, and allows for the visualization of the engine system before and after airflow correction. The model shows that not only does the manifold pressure drop have a significant impact on the in-cylinder peak pressure, but it also has an impact on the pressure wave introduced to the intake manifold as the ports are opened. Also, each cylinder has a considerable impact on the airflow into each successive cylinder.


Author(s):  
Shyy Woei Chang ◽  
Pei-An Chiang ◽  
Wei Ling Cai

Abstract The heat transfer performances of the trapezoidal channel with the impinging row jets normal to the channel apex wall with no effusion and three effusion conditions from one, two and three rows of bleeding holes along the channel apex, or, and, channel sidewalls were studied. At each effusion condition, the airflow extraction from the channel tip were regulated as full open conditions, and 0% (full close), 5%, 10% of the total airflow rate fed into the trapezoidal channel via the impinging row jets. For each effusion and discharge condition, the full-field heat transfer data over the channel apex and sidewalls were measured at channel Reynolds numbers of 5000, 7500, 10000, 12500 and 15000 using the steady-state infrared thermography method. The corresponding axial distributions of the jet mass flow rate at each effusion and discharge condition were measured at all the Reynolds numbers tested. While the crossflow and channel flow confinement significantly affected the axial distribution of the jet flow rate for the channel without effusion, the impact of effusion and discharge conditions on the distribution of the airflow rate through the row jet was negligible for the effusion channels. Without effusion, the strong crossflow effects acted with the weakened jet momentums near the sealed channel hub to substantially reduce the regional heat transfer rates. With effusion, the flow confinement formulated by the cavity-like channel hub and the crossflow developed along the test channel were significantly suppressed, leading to the even distribution of jet flow and the recovered impinging-jet heat transfer properties over the channel hub region. The preferential heat transfer performances among the present test channels with and without effusion gave rise to the channel with three rows of effusion holes. Relative to the heat transfer impacts caused by varying the row number of the effusion holes, the impacts of tip extraction were less evident; but the overall heat transfer performance was improved by reducing tip discharge. With leading-edge cooling applications to a gas turbine blade, three sets of heat transfer correlations that evaluated the regionally averaged Nusselt numbers over the channel apex and side walls with and without effusions at various tip extractions were devised.


Author(s):  
Ruta Miniotaite

The durability of surface layers of enclosures (outside walls of buildings) is highly influenced by stresses occurring in the plane of contact between finishing materials and that of the enclosure. Damage to external walls depends on a high moisture content, which in turn depends on high water absorption during driving rains. One example of such damage is damage due to direct water penetration in homogeneous walls. The other negative effects of a high moisture content are impaired heat insulation and accelerated degradation. This article investigates the external layer of walls and the durability of different paints. In case of bi-laminar system “paint film-the wall being painted” two opposite processes take place: the water flow rate from the outside towards the wall, and the water vapor flow rate of the wall to the outside. The optimum selection of paint is necessary. An investigation of the durability of wall surface paints in a climatic chamber is instructive only after intermediate investigations and measurements of the substrates’ physical and mechanical properties that aid in predetermining durability. The influence of moisture deformations upon degradation of coatings depends on the porosity of surface materials being coated, and on the origin and macrostructure of the coating.


2013 ◽  
Vol 13 (04) ◽  
pp. 1350064
Author(s):  
LINXIA GU ◽  
ERIC L. CUTLER

Quantitative evaluation of shear stress in the vessel wall due to the presence of asymptomatic gas emboli is lacking. The goal of this work was to assess the impact of chronic asymptomatic gas emboli on the risk of atherosclerosis through a custom-built cardiovascular flow simulator. Gas bubbles were created by forced air from a syringe pump. The influences of embolism injection rate, pulse rate, and time-averaged flow rate on the wall mean shear stress were investigated at resting and elevated heart rate conditions. The recorded pressure and volumetric flow rate from 24 experimental settings with four repetitions each were used to calculate the mean wall shear stress (MWSS). A directly inverse relationship between gas embolus rate and MWSS in the vessel, particularly at low vascular flow and diminished pulse rates was subsequently found. This study established a positive correlation between gas bubbles in the bloodstream and diminished MWSS, which implied a potential onset of atherosclerosis.


Author(s):  
Z. Meiring ◽  
S. J. van der Spuy ◽  
C. J. Meyer

Abstract Axial flow fans used in air-cooled condensers are typically analysed with smooth rounded hubs as they offer superior performance when compared to other hub configurations. However, such a hub configuration is impractical and may increase the manufacturing and installation costs of air-cooled condensers. As such, it is desirable to use a simpler, yet effective, hub configuration in order to reduce the installation cost. This paper assesses the impact that a simpler hub configuration may have on the performance of an axial flow fan. This is done through a comparison of three hub configurations: a cylindrical hub with a flat nose, a cylindrical hub with a hemispherical nose, and a disk hub, installed on the B2a-fan. Computational fluid dynamics modelling, utilising OpenFOAM, is used to simulate each hub configuration. It is found that the impact on performance due to hub configuration is dependent on the volumetric flow rate through the fan. A thin disk hub exhibits superior performance at low flow rates, resulting in a 8.4% improvement in total-to-static pressure rise and a 5.7% point improvement in total-to-static efficiency. As volumetric flow rate increases, the effectiveness of the disk hub configuration reduces while the hemispherical and flat nosed cylindrical hub configurations result in similar performance metrics at the design point flow rate. At above design point flow rate, the flat nosed cylindrical hub configuration shows an improvement in performance over the hemispherical nose cylindrical hub configuration, with a 9.5% increase in total-to-static pressure rise and a 5.1% point improvement in total-to-static efficiency.


2021 ◽  
Vol 136 (8) ◽  
Author(s):  
Anneline H. Christensen ◽  
Howard A. Stone ◽  
Kaare H. Jensen

AbstractPlasmodesmata are slender nanochannels that link neighboring plant cells and enable the exchange of nutrients and signaling molecules. Recent experiments have demonstrated significant variability in the concentric pore shape. However, the impact of these geometric fluctuations on transport capacity is unknown. Here, we consider the effects on diffusion and advection of two ideal shape perturbations: a radial displacement of the entire central desmotubule and a harmonic variation in the cytoplasmic sleeve width along the length of the pore. We use Fick’s law and the lubrication approximation to determine the diffusive current and volumetric flow rate across the pore. Our results indicate that an off-center desmotubule always increases the pressure-driven flow rate. However, the diffusive current is only enhanced for particles comparable in size to the width of the channel. In contrast, harmonic variations in the cytoplasmic sleeve width along the length of the pore reduce both the diffusive current and the pressure-driven flow. The simple models presented here demonstrate that shape perturbations can significantly influence transport across plasmodesmata nanopores.


Author(s):  
Hajime Nakamura

In order to hasten the thermal design for forced convection electronic devices, cooling fans should be modeled to reduce a computational load. A fan-curve-model, which generates volumetric flow rate versus the characteristics pressure difference of a fan, is very simple and usually incorporated into commercial CFD codes. However, this model often results in an erroneous flow rate. In this work, both the experiments and the CFD simulation were performed around small axial-flow-fans of 30 and 40 mm in diameter. The measured PQ curve was applied to the fan model, and compared the result of the simulation to the experimental data. It was clarified that the major reason behind the disagreement was the difference in the pressure definition of the fan model from the PQ curve measured using a chamber. Based on this, a simple method was proposed to correct this definition. Also, the system effect, which is the impact of obstacles on the fan delivery curve, was investigated by setting a cylindrical obstacle at upstream or downstream proximity of the fan.


2013 ◽  
Vol 838-841 ◽  
pp. 1909-1912
Author(s):  
Chun Bao Ma

Part of the gas fields utilize eddy current instruments to drainage and gas recovery currently, while the mechanism of drainage and gas recovery is not clear. This article conducts drainage and gas recovery simulating caculation, analyses the impact of gas flow rate, the moisture content of bottomhole and eddy current tool structure of its drainage effect, basing on the theory of gas-liquid two-phase flow. The results show that: the gas flow rate, moisture content and the normal section shape of eddy current tool spiral piece are the main factors that affect the eddy current tools draining. As follows: the larger the gas flowing rate, the better the tool draining effect; when the bottomhole moisture content is less than 10%, the draining effect is not obvious; but when the bottomhole moisture content is greater than 10%, with higher the moisture content, the draining effect is more obvious; the normal section shape of spiral piece is better to be rectangular rather than trapezoidal; the direction of rotation of the spiral piece (left and right hand) has little effect on draining.


Sign in / Sign up

Export Citation Format

Share Document