scholarly journals Constraining Upper Mantle Viscosity Using Temperature and Water Content Inferred from Seismic and Magnetotelluric Data

2022 ◽  
Author(s):  
Florence Ramirez ◽  
K Selway ◽  
C P Conrad ◽  
C Lithgow-Bertelloni ◽  
Florence Ramirez
2020 ◽  
Vol 224 (2) ◽  
pp. 961-972
Author(s):  
A G Semple ◽  
A Lenardic

SUMMARY Previous studies have shown that a low viscosity upper mantle can impact the wavelength of mantle flow and the balance of plate driving to resisting forces. Those studies assumed that mantle viscosity is independent of mantle flow. We explore the potential that mantle flow is not only influenced by viscosity but can also feedback and alter mantle viscosity structure owing to a non-Newtonian upper-mantle rheology. Our results indicate that the average viscosity of the upper mantle, and viscosity variations within it, are affected by the depth to which a non-Newtonian rheology holds. Changes in the wavelength of mantle flow, that occur when upper-mantle viscosity drops below a critical value, alter flow velocities which, in turn, alter mantle viscosity. Those changes also affect flow profiles in the mantle and the degree to which mantle flow drives the motion of a plate analogue above it. Enhanced upper-mantle flow, due to an increasing degree of non-Newtonian behaviour, decreases the ratio of upper- to lower-mantle viscosity. Whole layer mantle convection is maintained but upper- and lower-mantle flow take on different dynamic forms: fast and concentrated upper-mantle flow; slow and diffuse lower-mantle flow. Collectively, mantle viscosity, mantle flow wavelengths, upper- to lower-mantle velocities and the degree to which the mantle can drive plate motions become connected to one another through coupled feedback loops. Under this view of mantle dynamics, depth-variable mantle viscosity is an emergent flow feature that both affects and is affected by the configuration of mantle and plate flow.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
David Wallis ◽  
Lars N. Hansen ◽  
Angus J. Wilkinson ◽  
Ricardo A. Lebensohn

AbstractChanges in stress applied to mantle rocks, such as those imposed by earthquakes, commonly induce a period of transient creep, which is often modelled based on stress transfer among slip systems due to grain interactions. However, recent experiments have demonstrated that the accumulation of stresses among dislocations is the dominant cause of strain hardening in olivine at temperatures ≤600 °C, raising the question of whether the same process contributes to transient creep at higher temperatures. Here, we demonstrate that olivine samples deformed at 25 °C or 1150–1250 °C both preserve stress heterogeneities of ~1 GPa that are imparted by dislocations and have correlation lengths of ~1 μm. The similar stress distributions formed at these different temperatures indicate that accumulation of stresses among dislocations also provides a contribution to transient creep at high temperatures. The results motivate a new generation of models that capture these intragranular processes and may refine predictions of evolving mantle viscosity over the earthquake cycle.


Eos ◽  
2014 ◽  
Vol 95 (36) ◽  
pp. 332-332
Author(s):  
JoAnna Wendel
Keyword(s):  

Solid Earth ◽  
2014 ◽  
Vol 5 (1) ◽  
pp. 447-459 ◽  
Author(s):  
H. Steffen ◽  
G. Kaufmann ◽  
R. Lampe

Abstract. During the last glacial maximum, a large ice sheet covered Scandinavia, which depressed the earth's surface by several 100 m. In northern central Europe, mass redistribution in the upper mantle led to the development of a peripheral bulge. It has been subsiding since the begin of deglaciation due to the viscoelastic behaviour of the mantle. We analyse relative sea-level (RSL) data of southern Sweden, Denmark, Germany, Poland and Lithuania to determine the lithospheric thickness and radial mantle viscosity structure for distinct regional RSL subsets. We load a 1-D Maxwell-viscoelastic earth model with a global ice-load history model of the last glaciation. We test two commonly used ice histories, RSES from the Australian National University and ICE-5G from the University of Toronto. Our results indicate that the lithospheric thickness varies, depending on the ice model used, between 60 and 160 km. The lowest values are found in the Oslo Graben area and the western German Baltic Sea coast. In between, thickness increases by at least 30 km tracing the Ringkøbing-Fyn High. In Poland and Lithuania, lithospheric thickness reaches up to 160 km. However, the latter values are not well constrained as the confidence regions are large. Upper-mantle viscosity is found to bracket [2–7] × 1020 Pa s when using ICE-5G. Employing RSES much higher values of 2 × 1021 Pa s are obtained for the southern Baltic Sea. Further investigations should evaluate whether this ice-model version and/or the RSL data need revision. We confirm that the lower-mantle viscosity in Fennoscandia can only be poorly resolved. The lithospheric structure inferred from RSES partly supports structural features of regional and global lithosphere models based on thermal or seismological data. While there is agreement in eastern Europe and southwest Sweden, the structure in an area from south of Norway to northern Germany shows large discrepancies for two of the tested lithosphere models. The lithospheric thickness as determined with ICE-5G does not agree with the lithosphere models. Hence, more investigations have to be undertaken to sufficiently determine structures such as the Ringkøbing-Fyn High as seen with seismics with the help of glacial isostatic adjustment modelling.


2021 ◽  
Author(s):  
Sam Treweek

<p><b>The differing structural evolution of cratonic East Antarctica and younger West Antarctica has resulted in contrasting lithospheric and asthenospheric mantle viscosities between the two regions. Combined with poor constraints on the upper mantle viscosity structure of the continent, estimates of surface uplift in Antarctica predicted from models of glacial isostatic adjustment (GIA) and observed by Global Satellite Navigation System (GNSS) contain large misfits. This thesis presents a gravity study ofthe lithospheric transition zone beneath the Taylor Valley, Antarctica, conducted to constrain the variation in lithological parameters such as viscosity and density of the upper mantle across this region.</b></p> <p>During this study 119 new gravity observations were collected in the ice-free regions of the Taylor Valley and amalgamated with 154 existing land-based gravity observations, analysed alongside aerogravity measurements of southern Victoria Land. Gravity data are used to construct 2D gravity models of the subsurface beneath this region. An eastward gradient in Bouguer anomalies of ~- 1.6 mGal/km is observed within the Taylor Valley. Models reveal thickening of the Moho from 23±5 km beneath the Ross Sea to 35±5 km in the Polar Plateau (dipping at 24.5±7.2°), and lithospheric mantle 100 km thicker in East Antarctica (~200±30 km) than West Antarctica (~90±30 km). </p> <p>Models of predicted surface uplift history are used to estimate an asthenospheric mantle viscosity of 2.1x1020 Pa.s at full surface recovery beneath the Ross Embayment, differing by ~14% from the viscosity at 50% recovery. The temperature contrast between lithospheric and asthenospheric mantle is estimated as ~400°C, equivalent to a viscosity that decreases by a factor of about 30 over the mantle boundary.</p> <p>Results demonstrate that the history of surface uplift in the study area may be complicated, resulting in observations of uplift, or subsidence, at GNSS stations. Future work should incorporate additional geophysical methods, such as seismicity and electrical resistivity, improving constraints on gravity models. A better understanding of the surface uplift (or subsidence) history in the Transantarctic Mountains is critical, with implications in reducing uncertainty in GIA models.</p>


2010 ◽  
Vol 183 (1-2) ◽  
pp. 44-62 ◽  
Author(s):  
Kiyoshi Baba ◽  
Hisashi Utada ◽  
Tada-nori Goto ◽  
Takafumi Kasaya ◽  
Hisayoshi Shimizu ◽  
...  

2009 ◽  
Vol 46 (2) ◽  
pp. 139-154 ◽  
Author(s):  
Erşan Türkoğlu ◽  
Martyn Unsworth ◽  
Dinu Pana

Geophysical studies of upper mantle structure can provide constraints on diamond formation. Teleseismic and magnetotelluric data can be used in diamond exploration by mapping the depth of the lithosphere–asthenosphere boundary. Studies in the central Slave Craton and at Fort-à-la-Corne have detected conductors in the lithospheric mantle close to, or beneath, diamondiferous kimberlites. Graphite can potentially explain the enhanced conductivity and may imply the presence of diamonds at greater depth. Petrologic arguments suggest that the shallow lithospheric mantle may be too oxidized to contain graphite. Other diamond-bearing regions show no upper mantle conductor suggesting that the correlation with diamondiferous kimberlites is not universal. The Buffalo Head Hills in Alberta host diamondiferous kimberlites in a Proterozoic terrane and may have formed in a subduction zone setting. Long period magnetotelluric data were used to investigate the upper mantle resistivity structure of this region. Magnetotelluric (MT) data were recorded at 23 locations on a north–south profile extending from Fort Vermilion to Utikuma Lake and an east–west profile at 57.2°N. The data were combined with Lithoprobe MT data and inverted to produce a three-dimensional (3-D) resistivity model with the asthenosphere at 180–220 km depth. This model did not contain an upper mantle conductor beneath the Buffalo Head Hills kimberlites. The 3-D inversion exhibited an eastward dipping conductor in the crust beneath the Kiskatinaw terrane that could represent the fossil subduction zone that supplied the carbon for diamond formation. The low resistivity at crustal depths in this structure is likely due to graphite derived from subducted organic material.


2021 ◽  
Author(s):  
Lindy Elkins-Tanton ◽  
Jenny Suckale ◽  
Sonia Tikoo

&lt;p&gt;Rocky planets go through at least one and likely multiple magma ocean stages, produced by the giant impacts of accretion. Planetary data and models show that giant impacts do not dehydrate either the mantle or the atmosphere of their target planets. The magma ocean liquid consists of melted target material and melted impactor, and so will be dominated by silicate melt, and also contain dissolved volatiles including water, carbon, and sulfur compounds.&lt;/p&gt;&lt;p&gt;As the magma ocean cools and solidifies, water and other volatiles will be incorporated into the nominally anhydrous mantle phases up to their saturation limits, and will otherwise be enriched in the remaining, evolving magma ocean liquids. The water content of the resulting cumulate mantle is therefore the sum of the traces in the mineral grains, and any water in trapped interstitial liquids. That trapped liquid fraction may in fact be by far the largest contributor to the cumulate water budget.&lt;/p&gt;&lt;p&gt;The water and other dissolved volatiles in the evolving liquids may quickly reach the saturation limit of magmas near the surface, where pressure is low, but degassing the magma ocean is likely more difficult than has been assumed in some of our models. To degas into the atmosphere, the gases must exsolve from the liquid and form bubbles, and those bubbles must be able to rise quickly enough to avoid being dragged down by convection and re-dissolved at higher pressures. If bubbles are buoyant enough (that is, large enough) to decouple from flow and rise, then they are also dynamically unstable and liable to be torn into smaller bubbles and re-entrained. This conundrum led to the hypothesis that volatiles do not significantly degas until a high level of supersaturation is reached, and the bubbles form a buoyant layer and rise in diapirs in a continuum dynamics sense. This late degassing would have the twin effects of increasing the water content of the cumulates, and of speeding up cooling and solidification of the planet.&lt;/p&gt;&lt;p&gt;Once the mantle is solidified, the timeclock until the start of plate tectonics begins. Modern plate tectonics is thought to rely on water to lower the viscosity of the asthenosphere, but plate tectonics is also thought to be the process by which water is brought into the mantle. Magma ocean solidification, however, offers two relevant processes. First, following solidification the cumulate mantle is gravitationally unstable and overturns to stability, carrying water-bearing minerals from the upper mantle through the transition zone and into the lower mantle. Upon converting to lower-mantle phases, these minerals will release their excess water, since lower mantle phases have lower saturation limits, thus fluxing the upper mantle with water. Second, the mantle will be near its solidus temperature still, and thus its viscosity will be naturally low. When fluxed with excess water, the upper mantle would be expected to form a low degree melt, which if voluminous enough with rise to help form the earliest crust, and if of very low degree, will further reduce the viscosity of the asthenosphere.&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document