Effect of acetylation and succinylation on solubility profile, water absorption capacity, oil absorption capacity and emulsifying properties of mucuna bean (Mucuna pruriens) protein concentrate

Nahrung/Food ◽  
2004 ◽  
Vol 48 (2) ◽  
pp. 129-136 ◽  
Author(s):  
O. S. Lawal ◽  
K. O. Adebowale
2012 ◽  
pp. 385-388 ◽  
Author(s):  
Azadeh Saadatmandi ◽  
Mohammad Elahi ◽  
Reza Farhoosh ◽  
Mahdi Karimi

The incorporation of sugar beet fiber (0–5%) to tortilla chips and the effects on the chemical and sensory properties were studied. Addition of sugar beet fiber (SBF) led to an increasing of water absorption capacity, ash content and darkness while lowering the protein content and oil absorption. Sensory evaluation showed that the overall acceptability of tortilla chips reduces if adding more than 2% SBF.


2020 ◽  
Vol 45 (3) ◽  
Author(s):  
K. O. Soetan ◽  
A. A. Adeola

Underutilized and neglected legumes have numerous nutritional potentials with great contributions to food security but they are usually excluded from research and development agenda. This study evaluates the nutritional and functional properties of six different underutilized and neglected legumes; Lima bean (LB) (Phaseolus lunatus) (2006-009), Bambara groundnut (BG) (Vigna subterranea) (TVSU- 1482), winged bean (WB) (Psophocarpus tetragonolobus) (Tpt-48), jack bean (JB) (Canavalia ensiformis) (Tce-4), sword bean (SB) (Canavalia gladiata) (Tcg-4) and African yam bean (AYB) (Sphenostylis stenocarpa) (TSS-95) from the Genetic Resources Unit (GRU), International Institute of Tropical Agriculture (IITA), Ibadan, Oyo State, Nigeria. Nutritional and functional properties were evaluated using proximate composition, mineral analyses and functional properties like bulk density, water absorption capacity, oil absorption capacity, emulsion capacity and dispersibility. All the procedures were carried out using standard protocols. Statistical analysis was done using descriptive statistics. Results of proximate analysis showed that crude protein ranged from18.88 0.15%(WB) to 26.60±0.14%(AYB), crude fat ranged from 1.84 0.02% (JB) to 6.39 0.03% (BG), crude fibre ranged from 3.70 ±0.00% (AYB) to 5.04 0.03% (SB), ash ranged from 3.10 ± 0.14% (AYB) to 4.66 0.02% (LB), nitrogen free extract ranged from 55.60 0.04% (SB) to 62.97 0.12% (WB), moisture content ranged from 5.75 0.48% (AYB) to 10.77 0.03% (JB), dry matter ranged from 89.23 0.03% (JB) to 94.25 ± 0.488% (AYB) and gross energy ranged from 4.39 0.003 kcal/g (SB) to 4.66 0.00 (BG). Mineral content results revealed that calcium varied from 0.14 0.000% (LB) to 0.23 0.0003% (AYB), phosphorus varied from 0.20 0.0001% (AYB) to 0.38 0.00% (BG), sodium varied from 0.12 0.00% (LB and WB) to 0.35 0.0006% (AYB), potassium varied from 0.69 0.00% (LB) to 1.12 0.00% (BG), magnesium varied from 0.15 0.0002% (AYB) to 0.27 0.000% (BG) and iron varied from 44.84 0.03 (mg/g) (WB) to 80.98 0.0007(mg/g) (AYB). Results of functional properties showed that bulk density ranged from 0.45±0.04 g/mL (WB) to 0.77±0.08 g/mL (SB), water absorption capacity ranged from 168.33±0.03 g/100g (LB) to 183.62±0.01 g/100g (SB), oil absorption capacity ranged from 146.54 ±0.02 g/100g (LB) to 161.55±0.02 g/100g (JB), emulsion capacity ranged from 79.67 ±0.02 g/100g (LB) to 89.46±0.02 g/100g (SB) and dispersibility ranged from81.0±1.41%(SB) to 86.5±0.71% (BG). The study concluded that all the underutilized legumes have varying nutritional and functional properties, which should be exploited for nutritional benefits and industrial applications, as a solution to the problem of food shortage, especially in the developing countries.


Author(s):  
Nikhil D. Solanke Pradeep P. Thorat ◽  
Jayashri Ughade

The purpose of this study is to determine the quality of chickpea and black gram flour used in preparation of traditional products. As the study of physical properties of flour, both chickpea as well as black gram flour shows higher in bulk density. Water absorption index show lower level of both chickpea as well as black gram flour and water solubility index shows both chickpea as well as black gram flour in between bulk density and water absorption index. While the functional properties of flour, water absorption capacity lower for chickpea flour but higher oil absorption capacity. Higher the water absorption capacity for black gram flour and lower the oil absorption capacity for black gram. This concluded that bulk density for both chickpea flour and black gram is highest while oil absorption capacity is lower in both chickpea flour and black gram flours.


Food Research ◽  
2020 ◽  
Vol 4 (S2) ◽  
pp. 24-30
Author(s):  
N. Zainol ◽  
S. Subramanian ◽  
A.S. Adnan ◽  
N.H. Zulkifli ◽  
A.A.M. Zain ◽  
...  

The market of composite flour is growing as consumer nowadays choosing a healthy diet as personal preference. The suitability of the composite flour for use as intermediate or finish food ingredients highly depends on its physicochemical properties and its nutritional value. In this study, four types of local fruit crops (particularly their seeds) namely rambutan, cempedak, durian and nangka were dried and ground into powder form. The physicochemical properties such as bulk density, pH, water absorption capacity (WAC), oil absorption capacity (OAC), foam stability (FS), foam capacity (FC) as well as gelatinization properties of these composite flour were studied. Mineral content and heavy metal analytes were also determined. Results for bulk density from the least to the higher amount was 0.54±0.00 g/mL, 0.57±0.00 g/mL, 0.58±0.01 g/mL, 0.66±0.00 g/mL , 0.70±0.00 g/mL and 0.72±0.00 g/mL for rambutan flour, cempedak flour, tapioca flour, nangka flour, wheat flour and durian flour, respectively. Both cempedak flour and nangka flour showed the lowest pH value (5.72±0.01, 5.73±0.00), followed by rambutan flour and durian flour (6.67±0.00, 6.90±0.00) which similar to that tapioca flour and wheat flour (6.65±0.1, 6.08±0.0), respectively. Rambutan flour, cempedak flour and wheat flours showed the highest value in% of foam stability meanwhile these composite flours showed the lowest value in% of foam capacity. Results for water absorption capacity (WAC) and oil absorption capacity (OAC) in a range of 6% to 42% and 8% to 12% respectively, however, durian flour obtained the highest value for WAC while the value for OAC was the lowest. All of the composite flour possesses gelling properties at 13% concentration except for cempedak flour which completely gels at 20% of concentration. Rambutan flour showed the highest mineral analyte particularly in Zinc (107.19±0.17) and Copper (14.22±0.27) followed by nangka flour [Zinc (64.20±0.32) and Copper (10.40±0.12)] and durian flour [Zinc (52.38±0.42) and Copper (7.97±0.05)]. Level of heavy metal toxicity was under risk for all types of composite flour.


2019 ◽  
Vol 13 (02) ◽  
pp. 108
Author(s):  
Iwan Taruna

The present study aimed to investigate the influences of experimental variables, i.e. hydrothermal treatments (whithout and treated) and convective drying temperatures (70, 80 and 90°C) on the quality characteristics of okara powders. The quality parameters of the okara powder studied in this experiment consisted of color attributes, particle density, water absorption capacity, oil absorption capacity, pH, viscosity, and non-enzymatic browning. The results showed that the quality of okara powders varied depending on the experimental variables. Hydrothermal treatment and drying of okara at lower temperatures could increase the brightness (L value) from 62.37 to 70.23, and increased the b value of okara powder color from 43.65 to 49.16. However, the particle density (1.04-1.35 g/cm3) and pH value (6.48-6.78) of okara powders were not significantly affected by hydrothermal treatment. The okara powder solution with hydrothermal treatment (2.10-4.50 cP) showed a lower average viscosity value compared to okara powder without hydrothermal treatment ((2.60-4.80 cP). The study also concluded that okara powder absorbed significantly more water rather than absorbing oil, as indicated by the value of water absorption capacity (4.7-5.7 mL/g), which greater than oil absorption capacity (1.1-1.4 mL/g). Non-enzymatic browning occurrence on okara powder samples (OD = 0.52-0.66) was more affected by the drying temperature than hydrothermal treatment. Keywords: convective drying, hydrothermal treatment, okara powder quality


Author(s):  
Beenu Tanwar ◽  
Nistha Lamsal ◽  
Ankit Goyal ◽  
Vikas Kumar

Purpose: Buckwheat, a pseudocereal is a nutritionally dense and gluten-free grain which has a great potential especially in the functional food industry. Domestic processing methods like germination and roasting may enhance the nutritional and functional components of the buckwheat. Design/methodology/approach: The raw, roasted (120°C for 10 min) and germinated (27 ± 3°C for 24 hours) seed flour was analyzed for functional (bulk density, water absorption capacity, oil absorption capacity, swelling power, and emulsifying capacity and activity) and physicochemical (fat, ash, protein, total carbohydrate, total phenolic content and antioxidant activity) parameters. Findings: Both the methods showed varied deviation of functional properties and nutrients from the raw flour. Germination significantly (p 0.05) increased the protein (11.5%) and moisture (14.66%) whereas, decreased ash (1.8%), carbohydrate (62.84%), fat (1.33%) and fiber (7.87%); roasting significantly (p 0.05) increased the carbohydrate (71.38%) whereas, decreased ash (1.8%), fat (1.33%), fibre (6.32%), moisture (11.66%) and protein (7.6%) content. Germination significantly (p 0.05) increased the phenolic content and antioxidant activity (82.63%). Bulk density and emulsion capacity decreased in both germinated and roasted buckwheat flour. However, both germination and roasting significantly (p 0.05) increased the oil absorption capacity, swelling power, and water absorption capacity. Originality/value: The present study suggests that germinated and roasted flours can be utilized commercially for the production of economical, better and nutrient-dense food products for people suffering from cereal-based health disorders.


Author(s):  
A. Ihemeje ◽  
O. Ukauwa ◽  
C.C. Ekwe

Effect of cooking and germination on physiochemical and sensory attributes of African walnut were investigated. Result proved that the protein (14.90%) carbohydrates (15.39%) fat (45.84%) ash (3.5%) and fibre (1.17%) contents of the raw samples were increased by germination but subsequently decreased as germination progresses. Cooking was found to be more effective in reduction of antinutrients than germination thereby leading to enhanced bioavailability of most essential minerals (calcium, magnesium, sodium, phosphorus etc). Results also indicate significant (P<0.05) improvement on the functional properties (water absorption capacity, oil absorption capacity, ) of the raw sample by cooking and germination. Evaluation of sensory attributes showed that cooked walnut was most preferred to germinated and boiled walnut in terms of taste, after taste and general acceptability.


2013 ◽  
Vol 13 (60) ◽  
pp. 8249-8257
Author(s):  
ESD Osagie-Eweka ◽  
◽  
TH Alaiya

A comparative study was conducted to determine the effects of heat treatment and fermentation on the functional properties of African oil bean ( Pentaclethra macrophylla: Benth ) seeds. The objective was to determine the nutritional benefits inherent therein, and the possible utilization of this plant food source as a complement in food formulation and improvement. The bean seed was broken to obtain the cotyledon, locally processed by fermentation and heat treatment, after which it was milled to obtain flour from the African oil bean. The control group of day 0 was not subjected to fermentation, but heat - treated and all other experimental groups (Day 1 - 7) subjected to fermentation and heating. The following selected physio -chemical properties were analyzed for the African oil bean seeds: water absorption capacity, oil absorption capacity and bulk densities were determined; the emulsion capacity and whipping ability were also determined. The oil absorption capacity range d from 0.66 - 1.26 g/ml; water absorption capacity, 0.76 - 1.32 g/ml; emulsion capacity, 33.33 - 64.67 g/ml, emulsion stability after one hour, 6.00 - 63.33 g/ml, bulk density, 0.40 - 0.49 g/g and whipping ability, 0.00 - 0.93 g/ml. The processing methods adopted (fermentation and heating) to improve on the functional properties of the African oil bean seeds significantly affected (p<0.05) the bulk density, whipping ability, emulsion stability and Stability after one hour of experimental samples fermented and heat treated (Day 1 - 7) compared to the Day 0 sample that was only heated while there was , however , no statistical significance recorded for the oil absorption capacity and water absorption capacity in experimental Day 1 - 7 compared to the control (Day 0) . The treatment, demonstrated improved functional properties of the African Oil bean seeds; likely to enhance the palatability of formulated foods. The treatment did not show significant improvement on the oil absorption capacity and water absorption capacity of t he bean ; however, there was enhanced oil and water functionality.


10.5219/1232 ◽  
2020 ◽  
Vol 14 ◽  
pp. 682-691
Author(s):  
Funmilayo Deborah Adewumi ◽  
Labunmi Lajide ◽  
Abayomi Olagunjoye Adetuyi ◽  
Olajide Ayodele

Starches were isolated from cocoyam (Xanthosoma sagittifollium), white yam (Dioscorea rotundata) and bitter yam (Dioscorea dumentorum). Starch modification was carried out using acetic anhydride and phthalic anhydride. The native and modified starches were characterized using Fourier Transformed Infra-red Spectroscopy (FTIR) for identification of the functional groups. Functional properties such as water absorption capacities, oil absorption capacity, swelling power, solubility, gelation temperature, least gelation capacity, amylose content and pH were determined using standard procedures. Acetylation increased the water absorption capacity, oil absorption capacity, swelling power, amylose content, and solubility of the starches while phthalation decreased water absorption capacity, oil absorption capacity, swelling power, and solubility of the starches. Native cocoyam starch has the highest gelation temperature (85 °C) while Acetylated bitter yam has the lowest gelation temperature (74 °C). The pH of the native and modified starches was within the range of 4.14 − 6.55. Phthalation and acetylation increased the bulk density of the starches. Native cocoyam, white yam, and bitter yam starches had the lowest gelation concentration (6%). Modification of native starches will improve the usage of starch in food and non-food applications.


Sign in / Sign up

Export Citation Format

Share Document