scholarly journals Transposable Element Populations Shed Light on the Evolutionary History of Wheat and the Complex Co‐Evolution of Autonomous and Non‐Autonomous Retrotransposons

2021 ◽  
pp. 2100022
Author(s):  
Thomas Wicker ◽  
Christoph Stritt ◽  
Alexandros G. Sotiropoulos ◽  
Manuel Poretti ◽  
Curtis Pozniak ◽  
...  
Author(s):  
Sergio A Muñoz-Gómez ◽  
Keira Durnin ◽  
Laura Eme ◽  
Christopher Paight ◽  
Christopher E Lane ◽  
...  

Abstract A most interesting exception within the parasitic Apicomplexa is Nephromyces, an extracellular, probably mutualistic, endosymbiont found living inside molgulid ascidian tunicates (i.e., sea squirts). Even though Nephromyces is now known to be an apicomplexan, many other questions about its nature remain unanswered. To gain further insights into the biology and evolutionary history of this unusual apicomplexan, we aimed to (1) find the precise phylogenetic position of Nephromyces within the Apicomplexa, (2) search for the apicoplast genome of Nephromyces, and (3) infer the major metabolic pathways in the apicoplast of Nephromyces. To do this, we sequenced a metagenome and a metatranscriptome from the molgulid renal sac, the specialized habitat where Nephromyces thrives. Our phylogenetic analyses of conserved nucleus-encoded genes robustly suggest that Nephromyces is a novel lineage sister to the Hematozoa, which comprises both the Haemosporidia (e.g., Plasmodium) and the Piroplasmida (e.g., Babesia and Theileria). Furthermore, a survey of the renal sac metagenome revealed 13 small contigs that closely resemble the genomes of the non-photosynthetic reduced plastids, or apicoplasts, of other apicomplexans. We show that these apicoplast genomes correspond to a diverse set of most closely related but genetically divergent Nephromyces lineages that co-inhabit a single tunicate host. In addition, the apicoplast of Nephromyces appears to have retained all biosynthetic pathways inferred to have been ancestral to parasitic apicomplexans. Our results shed light on the evolutionary history of the only probably mutualistic apicomplexan known, Nephromyces, and provide context for a better understanding of its life style and intricate symbiosis.


2016 ◽  
Vol 283 (1845) ◽  
pp. 20161439 ◽  
Author(s):  
Chenyang Cai ◽  
Alfred F. Newton ◽  
Margaret K. Thayer ◽  
Richard A. B. Leschen ◽  
Diying Huang

Insects and fungi have a long history of association in shared habitats. Fungus-feeding, or mycophagy, is remarkably widespread in beetles (Coleoptera) and appears to be a primitive feeding habit that preceded feeding on plant tissues. Numerous Mesozoic beetles belonging to extant fungus-associated families are known, but direct fossil evidence elucidating mycophagy in insects has remained elusive. Here, we report a remarkable genus and species, Vetuproteinus cretaceus gen. et sp. nov., belonging to a new tribe (Vetuproteinini trib. nov.) of the extant rove beetle subfamily Proteininae (Staphylinidae) in Mid-Cretaceous Burmese amber. The mouthparts of this beetle have a markedly enlarged protruding galea bearing an apparent spore brush, a specialized structure we infer was used to scrape spores off surfaces and direct them into the mouth, as in multiple modern spore-feeding beetles. Considering the long evolutionary history of Fungi, the Mid-Cretaceous beetles likely fed on ancient Basidiomycota and/or Ascomycota fungi or spore-producing organisms such as slime moulds (Myxomycetes). The discovery of the first Mesozoic proteinine illustrates the antiquity of the subfamily, and suggests that ancestral Proteininae were already diverse and widespread in Pangaea before the supercontinent broke up.


2020 ◽  
Vol 126 (1) ◽  
pp. 103-118 ◽  
Author(s):  
Marcus A Koch ◽  
Johanna Möbus ◽  
Clara A Klöcker ◽  
Stephanie Lippert ◽  
Laura Ruppert ◽  
...  

Abstract Background and Aims Bristol rock cress is among the few plant species in the British Isles considered to have a Mediterranean–montane element. Spatiotemporal patterns of colonization of the British Isles since the last interglacial and after the Last Glacial Maximum (LGM) from mainland Europe are underexplored and have not yet included such floristic elements. Here we shed light on the evolutionary history of a relic and outpost metapopulation of Bristol rock cress in the south-western UK. Methods Amplified fragment length polymorphisms (AFLPs) were used to identify distinct gene pools. Plastome assembly and respective phylogenetic analysis revealed the temporal context. Herbarium material was largely used to exemplify the value of collections to obtain a representative sampling covering the entire distribution range. Key Results The AFLPs recognized two distinct gene pools, with the Iberian Peninsula as the primary centre of genetic diversity and the origin of lineages expanding before and after the LGM towards mountain areas in France and Switzerland. No present-day lineages are older than 51 ky, which is in sharp contrast to the species stem group age of nearly 2 My, indicating severe extinction and bottlenecks throughout the Pleistocene. The British Isles were colonized after the LGM and feature high genetic diversity. Conclusions The short-lived perennial herb Arabis scabra, which is restricted to limestone, has expanded its distribution range after the LGM, following corridors within an open landscape, and may have reached the British Isles via the desiccated Celtic Sea at about 16 kya. This study may shed light on the origin of other rare and peculiar species co-occurring in limestone regions in the south-western British Isles.


2020 ◽  
Vol 71 (1) ◽  
pp. 355-378 ◽  
Author(s):  
Janina Tamborski ◽  
Ksenia V. Krasileva

Nucleotide-binding leucine-rich repeat receptors (NLRs) monitor the plant intracellular environment for signs of pathogen infection. Several mechanisms of NLR-mediated immunity arose independently across multiple species. These include the functional specialization of NLRs into sensors and helpers, the independent emergence of direct and indirect recognition within NLR subfamilies, the regulation of NLRs by small RNAs, and the formation of NLR networks. Understanding the evolutionary history of NLRs can shed light on both the origin of pathogen recognition and the common constraints on the plant immune system. Attempts to engineer disease resistance have been sparse and rarely informed by evolutionary knowledge. In this review, we discuss the evolution of NLRs, give an overview of previous engineering attempts, and propose how to use evolutionary knowledge to advance future research in the generation of novel disease-recognition capabilities.


2019 ◽  
Vol 286 (1902) ◽  
pp. 20190115 ◽  
Author(s):  
Kevin M. Kocot ◽  
Christiane Todt ◽  
Nina T. Mikkelsen ◽  
Kenneth M. Halanych

Recent molecular phylogenetic investigations strongly supported the placement of the shell-less, worm-shaped aplacophoran molluscs (Solenogastres and Caudofoveata) and chitons (Polyplacophora) in a clade called Aculifera, which is the sister taxon of all other molluscs. Thus, understanding the evolutionary history of aculiferan molluscs is important for understanding early molluscan evolution. In particular, fundamental questions about evolutionary relationships within Aplacophora have long been unanswered. Here, we supplemented the paucity of available data with transcriptomes from 25 aculiferans and conducted phylogenomic analyses on datasets with up to 525 genes and 75 914 amino acid positions. Our results indicate that aplacophoran taxonomy requires revision as several traditionally recognized groups are non-monophyletic. Most notably, Cavibelonia, the solenogaster taxon defined by hollow sclerites, is polyphyletic, suggesting parallel evolution of hollow sclerites in multiple lineages. Moreover, we describe Apodomenia enigmatica sp. nov. , a bizarre new species that appears to be a morphological intermediate between Solenogastres and Caudofoveata. This animal is not a missing link, however; molecular and morphological studies show that it is a derived solenogaster that lacks a foot, mantle cavity and radula. Taken together, these results shed light on the evolutionary history of Aplacophora and reveal a surprising degree of morphological plasticity within the group.


2018 ◽  
Vol 115 (22) ◽  
pp. E5135-E5143 ◽  
Author(s):  
Wentao Li ◽  
Ruben J. G. Hulswit ◽  
Scott P. Kenney ◽  
Ivy Widjaja ◽  
Kwonil Jung ◽  
...  

Porcine deltacoronavirus (PDCoV), identified in 2012, is a common enteropathogen of swine with worldwide distribution. The source and evolutionary history of this virus is, however, unknown. PDCoV belongs to the Deltacoronavirus genus that comprises predominantly avian CoV. Phylogenetic analysis suggests that PDCoV originated relatively recently from a host-switching event between birds and mammals. Insight into receptor engagement by PDCoV may shed light into such an exceptional phenomenon. Here we report that PDCoV employs host aminopeptidase N (APN) as an entry receptor and interacts with APN via domain B of its spike (S) protein. Infection of porcine cells with PDCoV was drastically reduced by APN knockout and rescued after reconstitution of APN expression. In addition, we observed that PDCoV efficiently infects cells of unusual broad species range, including human and chicken. Accordingly, PDCoV S was found to target the phylogenetically conserved catalytic domain of APN. Moreover, transient expression of porcine, feline, human, and chicken APN renders cells susceptible to PDCoV infection. Binding of PDCoV to an interspecies conserved site on APN may facilitate direct transmission of PDCoV to nonreservoir species, including humans, potentially reflecting the mechanism that enabled a virus, ancestral to PDCoV, to breach the species barrier between birds and mammals. The APN cell surface protein is also used by several members of the Alphacoronavirus genus. Hence, our data constitute the second identification of CoVs from different genera that use the same receptor, implying that CoV receptor selection is subjected to specific restrictions that are still poorly understood.


2021 ◽  
Author(s):  
Claudine Bleykasten-Grosshans ◽  
Romeo Fabrizio ◽  
Anne Friedrich ◽  
Joseph Schacherer

AbstractTransposable elements (TE) are an important source of genetic variation with a dynamic and content that greatly differ in a wide range of species. The origin of the intraspecific content variation is not always clear and little is known about the precise nature of it. Here, we surveyed the species-wide content of the Ty LTR-retrotransposons in a broad collection of 1,011 Saccharomyces cerevisiae natural isolates to understand what can stand behind the variation of the repertoire, i.e. the type and number of Ty elements. We have compiled an exhaustive catalog of all TE variants present in the S. cerevisiae species by identifying a large set of new variants. The characterization of the TE content in each isolate clearly highlighted that each subpopulation exhibits a unique and specific repertoire, retracing the evolutionary history of the species. Most interestingly, we have shown that ancient interspecific hybridization events had a major impact in the birth of new variants and therefore in the shaping of the TE repertoires. We also investigated the transpositional activity of these elements in a large set of natural isolates, and we found a broad variability related to the level of ploidy as well as the genetic background. Overall, our results pointed out that the evolution of the Ty content is deeply impacted by clade-specific events such as introgressions and therefore follows the population structure. In addition, our study lays the foundation for future investigations to better understand the transpositional regulation and more broadly the TE-host interactions.Authors summaryMobile DNA elements are widely distributed in the genomes of many eukaryotes, but their contents greatly vary between species, populations and even individuals. In fact, little is known about the origin of this variation of transposable element (TE) content across individuals of the same species. Here, we surveyed the Ty LTR-retrotransposon content in a broad collection of 1,011 Saccharomyces cerevisiae yeast natural isolates. We have defined an exhaustive and precise catalog of the TE variants present in the S. cerevisiae species. We found that the TE content follows the evolutionary history of the species because each subpopulation has a unique and specific content. Interestingly, our results highlighted that ancient interspecific hybridization events led to the appearance of new TE variants and therefore had a strong impact on the variation of the TE repertoires in this species. We also investigated the transpositional activity of these elements and found a wide variability related to the genetic background diversity. Altogether, our results have led to a better understanding of the variability of TE content at a species level.


Sign in / Sign up

Export Citation Format

Share Document