scholarly journals High affinity group III mGluRs regulate mossy fiber input to CA3 interneurons

Hippocampus ◽  
2010 ◽  
Vol 21 (12) ◽  
pp. 1302-1317 ◽  
Author(s):  
Kathleen E. Cosgrove ◽  
Stephen D. Meriney ◽  
Germán Barrionuevo
Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 3245-3245
Author(s):  
Mitsufumi Nishio ◽  
Tomoyuki Endo ◽  
Katsuya Fujimoto ◽  
Satoshi Yamamoto ◽  
Masato Obara ◽  
...  

Abstract Recent studies have indicated that patients who receive stem cell transplantation (SCT) and an adjuvant rituximab demonstrate an increased risk of developing hypogammaglobulinemia. We have found that such hypogammaglobulinemia were due to the delayed recovery of memory B cells with an abnormal cell marker expression and impaired immunoglobulin production in vitro. (Nishio et al. Eur J Haemtol, 2006, Nishio et al. Br J Haematol, 2007) However, no speculation has been made regarding what factor(s) determined the risk of developing hypogammaglobulinemia after autologous SCT with the identical conditioning regimen and rituximab. Accumulated evidences have shown that FCGR3A of valine (V) allele has a higher affinity to human IgG than the phenylalanine (F) allele, and that cells bearing the FCGR3A V allele mediate antibody dependent cellular cytotoxicity more effectively. Compatibly, previous clinical studies that have examined single nucleotide polymorphisms (SNPs) of Fc receptor genes demonstrated that FCGR3A gene SNPs are associated with the response to rituximab, as a single agent, in patients with follicular lymphoma or Waldenstrom’s macroglobulinemia. These findings suggest that FCGR3A SNPs may be related to the levels of immunoglobulin after SCT and an adjuvant rituximab. To clarify this hypothesis, the FCGR3A-158V/F genotype and the levels of serum immunoglobulin six months after SCT were tested in twenty non- Hodgkin’s lymphoma (NHL) patients having received autlogous peripheral blood stem cell transplantation (APBSCT) with an adjuvant rituximab. We also compared the levels of immunoglobulin in ten NHL patients who received an identical conditioning regimen and APBSCT, but no rituximab (control group). Of the twenty patients tested for the FCGR3A-158V/F polymorphism, seven patients (35%) had homozygous F/F (158 F/F), 12 (60%) had heterozygous V/F (158 V/F), and one (5%) had homozygous V/V (158 V/V). Since only one patient was found to have 158 V/V polymorphism in this study, we defined those patients who had 158 F/F as the low affinity group, while those who had at least one 158 V allele were defined as the high affinity group following the previous definition by Anolik et al (Arthritis Rheum 2003). The three groups were not different in terms of gender, age, the disease stage, bone marrow involvement or number of extranodal sites involved at diagnosis. Before starting induction therapy, there was no significant difference in the levels of immunoglobulin among three groups. However, after APBSCT, the levels of IgG were significantly lower in the low affinity group (6.87 ± 2.38 g/l) than those in the high affinity group (10.20 ± 2.43 g/l) and control group (10.64 ± 3.04 g/l; both P<0.05). In addition, a significant difference was seen in the levels of IgA between the low affinity group (0.95 ± 0.64 g/l) and control group (1.63 ± 0.51 g/l) (P<0.05). The levels of IgA in the high affinity group (1.19 ± 0.55 g/l) were not significantly different from either those of control group or the low affinity group. In contrast to the levels of IgG or IgA, no significant differences were observed in the levels of IgM among three groups. These data suggest that the FCGR3A genotype may influence not only the outcome of rituximab therapy, but also the levels of IgG and IgA after APBSCT and rituximab.


1987 ◽  
Author(s):  
J A Berkner ◽  
G Mitra ◽  
J W Bloom

The interactions of monoclonal antibodies with highly purified Factor VIII:c have been studied utilizing the ELISA technique. ELISA plates were coated with Factor VIII:c, protein A purified monoclonal IgG was then added and bound antibody detected with peroxidase labeled antimouse IgG. A Scatchard-Sips plot approach to data analysis was used to calculate binding constants. The binding constants for four antibodies designated BD10, AD7, C7F7 and 39MH8 were as follows: BD10, KO = 7.1 x 108 M-1, n = 1.1 (moles antibody/moles ligand); AD7, KO = 3.1 x 108 M-1, n = 2.7; C7F7, KO = 3.6 x 1011M-1, n = 0.03; 39MH8, K = 6.0 x 1011 M-1, n = 0.03. The binding constants for C7F7 to the purified carboxy-terminal (residues 1649-2332) 80 kD functional region of the Factor VIII:c molecule were also determined: KO = 1.0 x 1011 M-1, n = 0.55. On the basis of these results the following conclusions can be drawn: 1) the antibodies can be divided into two groups: high affinity (suitable for use in immunopurification), C7F7 and 39MH8; low affinity: BD10 and AD7; 2) the antibodies in the low affinity group have valance values two orders of magnitude higher than the high affinity antibodies, C7F7 and 39MH8. The difference might be explained by the high affinity antibody epitopes on the immobilized Factor VIII:c being less exposed to the solution; 3) C7F7 binding to the 80 kD polypeptide, compared to the whole Factor VIII:c molecule, gave virtually identical Kc values, but dramatically different valance values. This suggests that the C7F7 epitope is more accessible on the 80 kD polypeptide.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Abdelmoneim Eshra ◽  
Hartmut Schmidt ◽  
Jens Eilers ◽  
Stefan Hallermann

The Ca2+-dependence of the priming, fusion, and replenishment of synaptic vesicles are fundamental parameters controlling neurotransmitter release and synaptic plasticity. Despite intense efforts, these important steps in the synaptic vesicles’ cycle remain poorly understood due to the technical challenge in disentangling vesicle priming, fusion, and replenishment. Here, we investigated the Ca2+-sensitivity of these steps at mossy fiber synapses in the rodent cerebellum, which are characterized by fast vesicle replenishment mediating high-frequency signaling. We found that the basal free Ca2+ concentration (<200 nM) critically controls action potential-evoked release, indicating a high-affinity Ca2+ sensor for vesicle priming. Ca2+ uncaging experiments revealed a surprisingly shallow and non-saturating relationship between release rate and intracellular Ca2+ concentration up to 50 μM. The rate of vesicle replenishment during sustained elevated intracellular Ca2+ concentration exhibited little Ca2+-dependence. Finally, quantitative mechanistic release schemes with five Ca2+ binding steps incorporating rapid vesicle replenishment via parallel or sequential vesicle pools could explain our data. We thus show that co-existing high- and low-affinity Ca2+ sensors mediate priming, fusion, and replenishment of synaptic vesicles at a high-fidelity synapse.


2015 ◽  
Vol 112 (23) ◽  
pp. E3075-E3084 ◽  
Author(s):  
Igor Delvendahl ◽  
Lukasz Jablonski ◽  
Carolin Baade ◽  
Victor Matveev ◽  
Erwin Neher ◽  
...  

Fast synchronous neurotransmitter release at the presynaptic active zone is triggered by local Ca2+ signals, which are confined in their spatiotemporal extent by endogenous Ca2+ buffers. However, it remains elusive how rapid and reliable Ca2+ signaling can be sustained during repetitive release. Here, we established quantitative two-photon Ca2+ imaging in cerebellar mossy fiber boutons, which fire at exceptionally high rates. We show that endogenous fixed buffers have a surprisingly low Ca2+-binding ratio (∼15) and low affinity, whereas mobile buffers have high affinity. Experimentally constrained modeling revealed that the low endogenous buffering promotes fast clearance of Ca2+ from the active zone during repetitive firing. Measuring Ca2+ signals at different distances from active zones with ultra-high-resolution confirmed our model predictions. Our results lead to the concept that reduced Ca2+ buffering enables fast active zone Ca2+ signaling, suggesting that the strength of endogenous Ca2+ buffering limits the rate of synchronous synaptic transmission.


2021 ◽  
Author(s):  
Pok Man Leung ◽  
Anne Daebeler ◽  
Eleonora Chiri ◽  
Paul R. F. Cordero ◽  
Iresha Hanchapola ◽  
...  

Chemolithoautotrophic nitrite-oxidizing bacteria (NOB) of the genus Nitrospira contribute to nitrification in diverse natural environments and engineered systems. Nitrospira are thought to be well-adapted to substrate limitation owing to their high affinity for nitrite and capacity to use alternative energy sources. Here, we demonstrate that the canonical nitrite oxidizer Nitrospira moscoviensis oxidizes hydrogen (H2) below atmospheric levels using a high-affinity group 2a nickel-iron hydrogenase [Km(app) = 32 nM]. Atmospheric H2 oxidation occurred under both nitrite-replete and nitrite-deplete conditions, suggesting low-potential electrons derived from H2 oxidation promote nitrite-dependent growth and enable survival during nitrite limitation. Proteomic analyses confirmed the hydrogenase was abundant under both conditions and indicated extensive metabolic changes occur to reduce energy expenditure and growth under nitrite-deplete conditions. Respirometry analysis indicates the hydrogenase and nitrite oxidoreductase are bona fide components of the aerobic respiratory chain of N. moscoviensis, though they transfer electrons to distinct electron carriers in accord with the contrasting redox potentials of their substrates. Collectively, this study suggests atmospheric H2 oxidation enhances the growth and survival of NOB in amid variability of nitrite supply. These findings also extend the phenomenon of atmospheric H2 oxidation to a seventh phylum (Nitrospirota) and reveal unexpected new links between the global hydrogen and nitrogen cycles.


2001 ◽  
Vol 277 (9) ◽  
pp. 7333-7340 ◽  
Author(s):  
Erica Rosemond ◽  
Vanya Peltekova ◽  
Mark Naples ◽  
Henning Thøgersen ◽  
David R. Hampson

Sign in / Sign up

Export Citation Format

Share Document