Numerical studies on the influences of the South-to-North Water Transfer Project on groundwater level changes in the Beijing Plain, China

2018 ◽  
Vol 32 (12) ◽  
pp. 1858-1873 ◽  
Author(s):  
Menglin Zhang ◽  
Litang Hu ◽  
Lili Yao ◽  
Wenjie Yin
2018 ◽  
Vol 246 ◽  
pp. 01069
Author(s):  
GAO Yuanyuan ◽  
LI Jia ◽  
HAO Qichen ◽  
YU Chu ◽  
MENG Suhua

The South-North Water Transfer Project is playing a more and more important role in ensuring economic and social development and maintaining a good ecological environment for north of China. However, long-term over-exploitation of groundwater has caused a series of ecological and environmental problems. The first phase of the South-to-North Water Transfer Project was successfully passed through in 2013 and 2014. The water supplied by this huge project provided critical water source for implementing groundwater overexploitation control. In order to promote the management and protection of groundwater resources, the overdraft areas had adopted comprehensive measures to reduce groundwater extraction, such as accelerating the construction of supporting projects, shutting down groundwater mining wells, improving the groundwater monitoring station network, and reforming the water resources fees and so on. The urban groundwater overexploitation control work has received good progress. Based on the investigation and statistics of groundwater overexploitation control in the water receiving region of the first phase of the South-North Water Transfer Project, it was found that since the first phase of the South-to-North Water Transfer Project passing though, the water groundwater withdrawal decreased by 15.23×108 m3 by making full use of the water from the South-North Water Transfer Project, including 2.36×108 m3 in Beijing, 0.67×108 m3 in Tianjin, 6.39×108 m3 in Hebei, 3.84×108 m3 in Henan, 1.62×108 m3 in Shandong, and 0.35×108 m3 in Jiangsu, respectively. The number of groundwater withdrawal wells closed was 15202, including 331 wells in Beijing, 582 in Tianjin, 4895 in Hebei, 6213 in Henan, 2012 in Shandong, and 1169 eyes in Jiangsu, respectively. In terms of groundwater level, the trend of continuous decline in groundwater level has been effectively curbed in most areas of the water receiving region, however, in some areas the groundwater level is still declining due to the too large cumulative over-exploitation of groundwater. Shijiazhuang City was selected as typical monitoring site to explain the groundwater overexploitation control effect on groundwater level. The analysis of the monitoring data of typical monitoring sites showed that groundwater overexploitation control has a great influence on the groundwater level change in Shijiazhuang urban area. This study also puts forward some problems and suggestions in promoting the groundwater overexploitation control in the water receiving region, and provides reference for the construction of ecological civilization and national water security.


2011 ◽  
Vol 65 (4) ◽  
pp. 1323-1331 ◽  
Author(s):  
Yong Yang ◽  
Guo-Min Li ◽  
Yan-Hui Dong ◽  
Ming Li ◽  
Jian-Qing Yang ◽  
...  

Author(s):  
Yu Yao ◽  
Peifang Wang ◽  
Chao Wang

The world famous South-to-North Water Transfer Project was built to alleviate serious water shortages in northern China. Considering that lake Hongze is an important freshwater lake in this region, analyzing the influence of water diversion on typical contaminant bioavailability and microbial abundance could aid in achieving a good overall understanding of hydrodynamic variation. Accordingly, in situ high-resolution measurements of diffusive gradients in thin films (DGT) and next-generation high-throughput sequencing were combined in order to survey Lake Hongze and determine the relationship between environmental factors and microbial communities. The DGT method effectively obtained more than the 85% of bioavailable concentrations of the corresponding contaminants; the results showed that labile P, S, Fe, As, and Hg concentrations were higher in areas influenced by water transfer. Moreover, the relative abundance and alpha diversity of the sampling sites distributed in the water transfer area differed significantly from other sites. The pH, conductivity, and labile Mn, As, and P were shown to be the primary environmental factors affecting the abundance and diversity of microbes. With the exception of bioturbation-affected sites controlled by labile Mn and pH, sites distributed in the water diversion area were most affected by As and conductivity, with little spatial discrepancy. Furthermore, site 2, with higher bioturbation abundance, and site 10, with stronger hydrodynamics, had low alpha diversity compared to the other sites. Consequently, the bioavailability of typical contaminants such as P, S, As, Hg, Fe, Mg, Cd, Pb, and Mn, as well as the diversity and abundance of microbial in the sites influenced by the water diversion, were significantly different to the other sites. Thus, the impacts of the South-to-North Water Transfer Project on participant lakes were non-negligible overall in the investigation.


2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Yuyan Zhou ◽  
Weihua Xiao ◽  
Jianhua Wang ◽  
Yong Zhao ◽  
Ya Huang ◽  
...  

Groundwater has always been a valuable resource in Beijing, facing a great decline of groundwater level during the past decades. However, few previous researches have revealed the spatial variation of groundwater level within Beijing Plain. In this study, spatiotemporal variation of groundwater level from 2001 to 2010 in Beijing Plain has been investigated. Factor analysis has been conducted to identify the primary influencing factor. Results showed that the groundwater level decreased by 8.41 m from 2001 to 2010, with a linear decreasing rate of 0.954 m per year averagely. Significant spatial variation characteristics have been detected. The north area suffered more groundwater depletion than the south part in general. The lowest groundwater level has been identified downstream Miyun Reservoir, central part of the Plain. Nevertheless, the most of the south part witnessed a slight revival between 2001 and 2010. This may be due to the differences of socioeconomic circumstances in the Plain. Three influencing factors, that is, “demand factor,” “supply factor,” and “loss factor,” have been identified in the water balance model. Eigenvalues of these factors are 3.563, 2.910, and 1.632, respectively, indicating that these factors influenced the groundwater system to various extents, with the demand factor being the primary one.


2014 ◽  
Vol 919-921 ◽  
pp. 1248-1251
Author(s):  
Xiao Cheng Su ◽  
Zhi Liu ◽  
Xiao Yun Wang

The South-to-North Water Transfer Project is a cross century water diversion project. So it is very important to ensure its normal operation. The hydraulic calculation of Jiping Canal of the South-to-North Water Transfer Project is carried out in this paper, working out cross section, the profile and the X-Y-Z perspective plot of Jiping Canal respectively. An analysis of the canal stability enables us to get the condition in which the canal is stable, which will provide strong technical support for the design and construction of the canal. Therefore, the analysis has important practical significance. The study will be effective guidance on the normal operation of Jiping Canal of South-to-North Water Transfer Project.


2012 ◽  
Vol 524-527 ◽  
pp. 3005-3020 ◽  
Author(s):  
Chun Xiang Liu

Having become the tool to resolve the watershed environmental protection and local development contradictions, ecological compensation has been drawing increasing attention. Conflicts in environmental protection and regional development of the middle route water source area of the South-to-North Water Transfer Project urgently need to be resolved by the ecological compensation. However, the ecological compensation remains unsound yet. The author of this paper introduces the existing ecological compensation policy of the middle route water source area, analyzes main problems existing in ecological compensation policies in the middle route water source area, e.g. lack of legislative support for ecological compensation, insufficient researches on compensation standards, limited channel of funds and unsound evaluation mechanism and ultimately puts forward some suggestions on the improvement of ecological compensation policies of the water source area.


Sign in / Sign up

Export Citation Format

Share Document