scholarly journals Analysis on the Effect of Groundwater Overexploitation Control in Water receiving region of the First Phase of the South-North Water Transfer Project

2018 ◽  
Vol 246 ◽  
pp. 01069
Author(s):  
GAO Yuanyuan ◽  
LI Jia ◽  
HAO Qichen ◽  
YU Chu ◽  
MENG Suhua

The South-North Water Transfer Project is playing a more and more important role in ensuring economic and social development and maintaining a good ecological environment for north of China. However, long-term over-exploitation of groundwater has caused a series of ecological and environmental problems. The first phase of the South-to-North Water Transfer Project was successfully passed through in 2013 and 2014. The water supplied by this huge project provided critical water source for implementing groundwater overexploitation control. In order to promote the management and protection of groundwater resources, the overdraft areas had adopted comprehensive measures to reduce groundwater extraction, such as accelerating the construction of supporting projects, shutting down groundwater mining wells, improving the groundwater monitoring station network, and reforming the water resources fees and so on. The urban groundwater overexploitation control work has received good progress. Based on the investigation and statistics of groundwater overexploitation control in the water receiving region of the first phase of the South-North Water Transfer Project, it was found that since the first phase of the South-to-North Water Transfer Project passing though, the water groundwater withdrawal decreased by 15.23×108 m3 by making full use of the water from the South-North Water Transfer Project, including 2.36×108 m3 in Beijing, 0.67×108 m3 in Tianjin, 6.39×108 m3 in Hebei, 3.84×108 m3 in Henan, 1.62×108 m3 in Shandong, and 0.35×108 m3 in Jiangsu, respectively. The number of groundwater withdrawal wells closed was 15202, including 331 wells in Beijing, 582 in Tianjin, 4895 in Hebei, 6213 in Henan, 2012 in Shandong, and 1169 eyes in Jiangsu, respectively. In terms of groundwater level, the trend of continuous decline in groundwater level has been effectively curbed in most areas of the water receiving region, however, in some areas the groundwater level is still declining due to the too large cumulative over-exploitation of groundwater. Shijiazhuang City was selected as typical monitoring site to explain the groundwater overexploitation control effect on groundwater level. The analysis of the monitoring data of typical monitoring sites showed that groundwater overexploitation control has a great influence on the groundwater level change in Shijiazhuang urban area. This study also puts forward some problems and suggestions in promoting the groundwater overexploitation control in the water receiving region, and provides reference for the construction of ecological civilization and national water security.

2018 ◽  
Vol 20 (4) ◽  
pp. 989-1007 ◽  
Author(s):  
Xiyuan Deng ◽  
Fawen Li ◽  
Yong Zhao ◽  
Shaofei Li

Abstract With the development of economy and society, deep groundwater exploitation has intensified, even to the point of over-exploitation, resulting in multiple geological disasters. Thus, it is essential to regulate the deep groundwater table to a reasonable range. This paper selected the water intake area of the South-to-North Water Transfer Project in Tianjin as a case study. First, the groundwater flow and land subsidence model with MODFLOW-2005 and SUB Package were constructed. Second, the regulation schemes were designed based on the corresponding regulation principles. Lastly, the established groundwater model was adopted to forecast and simulate deep water table and land subsidence under different exploitation scenarios, and regulation effects were analyzed from the viewpoints of exploitation total amount, exploitation distribution, and exploited horizon. The results showed that groundwater tables of different layers and land subsidence were effectively controlled and improved under the three exploitation schemes for different planning level years. The exploitation total amount of groundwater, exploitation distribution, and exploited horizon had a direct impact on water table and land subsidence. From the perspective of regulating deep groundwater, all three schemes could achieve this goal, hence the three schemes were reasonable and feasible. The results are of great significance for rational utilization of deep groundwater.


2013 ◽  
Vol 12 (11) ◽  
pp. 2239-2247 ◽  
Author(s):  
Guomin Li ◽  
Haizhen Xu ◽  
Ming Li ◽  
Shouquan Zhang ◽  
Yanhui Dong ◽  
...  

Hydrology ◽  
2020 ◽  
Vol 7 (3) ◽  
pp. 64 ◽  
Author(s):  
Mun-Ju Shin ◽  
Soo-Hyoung Moon ◽  
Kyung Goo Kang ◽  
Duk-Chul Moon ◽  
Hyuk-Joon Koh

To properly manage the groundwater resources, it is necessary to analyze the impact of groundwater withdrawal on the groundwater level. In this study, a Long Short-Term Memory (LSTM) network was used to evaluate the groundwater level prediction performance and analyze the impact of the change in the amount of groundwater withdrawal from the pumping wells on the change in the groundwater level in the nearby monitoring wells located in Jeju Island, Korea. The Nash–Sutcliffe efficiency between the observed and simulated groundwater level was over 0.97. Therefore, the groundwater prediction performance of LSTM was remarkably high. If the groundwater level is simulated on the assumption that the future withdrawal amount is reduced by 1/3 of the current groundwater withdrawal, the range of the maximum rise of the groundwater level would be 0.06–0.13 m compared to the current condition. In addition, assuming that no groundwater is taken, the range of the maximum increase in the groundwater level would be 0.11–0.38 m more than the current condition. Therefore, the effect of groundwater withdrawal on the groundwater level in this area was exceedingly small. The method and results can be used to develop new groundwater withdrawal sources for the redistribution of groundwater withdrawals.


2017 ◽  
Vol 17 (6) ◽  
pp. 1544-1557 ◽  
Author(s):  
Y. Yang ◽  
L. C. Liu ◽  
B. H. Li ◽  
J. F. Gu ◽  
D. Q. Zheng ◽  
...  

Abstract The level of groundwater has fallen dramatically in the plain, and several obvious cones of depression in the groundwater surface around waterworks have expanded, because of groundwater over-drafting in Beijing. This condition has led to reductions in available groundwater resources, and has even restricted the economic development of Beijing. However, an opportunity has been provided for groundwater recharge, since considerable storage space has been created by this overexploitation. At the beginning of the South-to-North Water Diversion, more water will be transferred to Beijing, because of the supporting infrastructure that is under construction in other cities. Therefore, the underground reservoir in Miyun, Huairou and Shunyi (MHS) district was taken as the study object, and geological exploration and GIS overlay techniques were used to determine the extent and storage capacity of this underground reservoir. The rivers in MHS district were investigated to identify which ones provide suitable places for recharge. Furthermore, a numerical model was built to forecast the groundwater flow field and water level, and an optimal storage program was proposed. The results of this study provide technical guidance for recharge, as well as the safe storage and rational use of the water provided by the South-to-North Water Diversion.


Author(s):  
Yu Yao ◽  
Peifang Wang ◽  
Chao Wang

The world famous South-to-North Water Transfer Project was built to alleviate serious water shortages in northern China. Considering that lake Hongze is an important freshwater lake in this region, analyzing the influence of water diversion on typical contaminant bioavailability and microbial abundance could aid in achieving a good overall understanding of hydrodynamic variation. Accordingly, in situ high-resolution measurements of diffusive gradients in thin films (DGT) and next-generation high-throughput sequencing were combined in order to survey Lake Hongze and determine the relationship between environmental factors and microbial communities. The DGT method effectively obtained more than the 85% of bioavailable concentrations of the corresponding contaminants; the results showed that labile P, S, Fe, As, and Hg concentrations were higher in areas influenced by water transfer. Moreover, the relative abundance and alpha diversity of the sampling sites distributed in the water transfer area differed significantly from other sites. The pH, conductivity, and labile Mn, As, and P were shown to be the primary environmental factors affecting the abundance and diversity of microbes. With the exception of bioturbation-affected sites controlled by labile Mn and pH, sites distributed in the water diversion area were most affected by As and conductivity, with little spatial discrepancy. Furthermore, site 2, with higher bioturbation abundance, and site 10, with stronger hydrodynamics, had low alpha diversity compared to the other sites. Consequently, the bioavailability of typical contaminants such as P, S, As, Hg, Fe, Mg, Cd, Pb, and Mn, as well as the diversity and abundance of microbial in the sites influenced by the water diversion, were significantly different to the other sites. Thus, the impacts of the South-to-North Water Transfer Project on participant lakes were non-negligible overall in the investigation.


2014 ◽  
Vol 919-921 ◽  
pp. 1248-1251
Author(s):  
Xiao Cheng Su ◽  
Zhi Liu ◽  
Xiao Yun Wang

The South-to-North Water Transfer Project is a cross century water diversion project. So it is very important to ensure its normal operation. The hydraulic calculation of Jiping Canal of the South-to-North Water Transfer Project is carried out in this paper, working out cross section, the profile and the X-Y-Z perspective plot of Jiping Canal respectively. An analysis of the canal stability enables us to get the condition in which the canal is stable, which will provide strong technical support for the design and construction of the canal. Therefore, the analysis has important practical significance. The study will be effective guidance on the normal operation of Jiping Canal of South-to-North Water Transfer Project.


Sign in / Sign up

Export Citation Format

Share Document