Temporal trends of hydro-climatic variables and runoff response to climatic variability and vegetation changes in the Yiluo River basin, China

2009 ◽  
Vol 23 (21) ◽  
pp. 3030-3039 ◽  
Author(s):  
Qiang Liu ◽  
Zhifeng Yang ◽  
Baoshan Cui ◽  
Tao Sun
Author(s):  
Panpan Chen ◽  
Huamin Liu ◽  
Zongming Wang ◽  
Dehua Mao ◽  
Cunzhu Liang ◽  
...  

Accurate monitoring of grassland vegetation dynamics is essential for ecosystem restoration and the implementation of integrated management policies. A lack of information on vegetation changes in the Wulagai River Basin restricts regional development. Therefore, in this study, we integrated remote sensing, meteorological, and field plant community survey data in order to characterize vegetation and ecosystem changes from 1997 to 2018. The residual trend (RESTREND) method was utilized to detect vegetation changes caused by human factors, as well as to evaluate the impact of the management of pastures. Our results reveal that the normalized difference vegetation index (NDVI) of each examined ecosystem type showed an increasing trend, in which anthropogenic impact was the primary driving force of vegetation change. Our field survey confirmed that the meadow steppe ecosystem increased in species diversity and aboveground biomass; however, the typical steppe and riparian wet meadow ecosystems experienced species diversity and biomass degradation, therefore suggesting that an increase in NDVI may not directly reflect ecosystem improvement. Selecting an optimal indicator or indicator system is necessary in order to formulate reasonable grassland management policies for increasing the sustainability of grassland ecosystems.


2008 ◽  
Vol 38 (3) ◽  
pp. 431-438 ◽  
Author(s):  
Wanderley Rodrigues Bastos ◽  
Mauro de Freitas Rebelo ◽  
Márlon de Freitas Fonseca ◽  
Ronaldo de Almeida ◽  
Olaf Malm

Over the last 20 years several projects carried on the Madeira River basin in the Amazon produced a great amount data on total Hg concentration in different fish species. In this paper we discuss temporal trends in Hg contamination and its relation to body weight in some of those fishes, showing that even within similar groups, such as carnivorous and non-migratory fish, the interspecies variability in Hg accumulation is considerable.


2021 ◽  
Author(s):  
Santiago Duarte ◽  
Gerald Corzo ◽  
Germán Santos

<p>Bogotá’s River Basin, it’s an important basin in Cundinamarca, Colombia’s central region. Due to the complexity of the dynamical climatic system in tropical regions, can be difficult to predict and use the information of GCMs at the basin scale. This region is especially influenced by ENSO and non-linear climatic oscillation phenomena. Furthermore, considering that climatic processes are essentially non-linear and possibly chaotic, it may reduce the effectiveness of downscaling techniques in this region. </p><p>In this study, we try to apply chaotic downscaling to see if we could identify synchronicity that will allow us to better predict. It was possible to identify clearly the best time aggregation that can capture at the best the maximum relations between the variables at different spatial scales. Aside this research proposes a new combination of multiple attractors. Few analyses have been made to evaluate the existence of synchronicity between two or more attractors. And less analysis has considered the chaotic behaviour in attractors derived from climatic time series at different spatial scales. </p><p>Thus, we evaluate general synchronization between multiple attractors of various climate time series. The Mutual False Nearest Neighbours parameter (MFNN) is used to test the “Synchronicity Level” (existence of any type of synchronization) between two different attractors. Two climatic variables were selected for the analysis: Precipitation and Temperature. Likewise, two information sources are used: At the basin scale, local climatic-gauge stations with daily data and at global scale, the output of the MPI-ESM-MR model with a spatial resolution of 1.875°x1.875° for both climatic variables (1850-2005). In the downscaling process, two RCP (Representative Concentration Pathways)  scenarios are used, RCP 4.5 and RCP 8.5.</p><p>For the attractor’s reconstruction, the time-delay is obtained through the  Autocorrelation and the Mutual Information functions. The False Nearest Neighbors method (FNN) allowed finding the embedding dimension to unfold the attractor. This information was used to identify deterministic chaos at different times (e.g. 1, 2, 3 and 5 days) and spatial scales using the Lyapunov exponents. These results were used to test the synchronicity between the various chaotic attractor’s sets using the MFNN method and time-delay relations. An optimization function was used to find the attractor’s distance relation that increases the synchronicity between the attractors.  These results provided the potential of synchronicity in chaotic attractors to improve rainfall and temperature downscaling results at aggregated daily-time steps. Knowledge of loss information related to multiple reconstructed attractors can provide a better construction of downscaling models. This is new information for the downscaling process. Furthermore, synchronicity can improve the selection of neighbours for nearest-neighbours methods looking at the behaviour of synchronized attractors. This analysis can also allow the classification of unique patterns and relationships between climatic variables at different temporal and spatial scales.</p>


Water ◽  
2017 ◽  
Vol 9 (4) ◽  
pp. 258 ◽  
Author(s):  
Lei Ren ◽  
Lian-qing Xue ◽  
Yuan-hong Liu ◽  
Jia Shi ◽  
Qiang Han ◽  
...  

Author(s):  
Valentina Dobryakova ◽  
Natalya Moskvina ◽  
Andrey Dobryakov ◽  
Lilia Zhegalina ◽  
Ildar Idrisov

The information content and effectiveness of ecological research of the territory can be improved using the methods of multivariate analysis and mapping of the results. The article presents the analysis and mapping results of spatial and temporal trends of hydrocarbon pollution in the Tromjegan river basin for the period 2006–2018 using the tools of ArcGIS Pro. The informational and basic research is the data of local environmental monitoring of licensed blocks of the Khanty-Mansiysk Autonomous Okrug — Ugra. Pollution analysis was carried out on the basis of a detailed study of the geography of the source data using statistical calculations (minimum, average, maximum distances between sampling points, Getis-Ord Gi* index). Thematic maps were constructed using data averaged over the year. The spatial and temporal dynamics of hydrocarbons concentration in surface waters for 2006–2018 is analyzed using the “Hot Spot Analysis” tool. A temporary cluster section of hydrocarbons average annual concentration according to the Getis-Ord Gi* indicator allowed us to identify trends in the dynamics of indicators. Maps of hydrocarbons average annual concentration were compiled and the results of a spatial-temporal analysis of hydrocarbons average annual concentration in surface waters were presented. The identification of patterns in large arrays of long-term data and the consideration of the spatial component are necessary elements of modern environmental research. Analysis of the time series of average annual concentrations in the Tromjegan river basin showed a clear trend in the dynamics of hydrocarbon pollution. The findings can be the basis for making managerial decisions in the environmental monitoring of licensed blocks of the Khanty-Mansiysk Autonomous Okrug — Ugra.


2018 ◽  
Vol 13 (1) ◽  
pp. 32-43 ◽  
Author(s):  
Umesh Kumar Singh ◽  
Balwant Kumar

Anthropogenic greenhouse gas emission is altering the global hydrological cycle due to change in rainfall pattern and rising temperature which is responsible for alteration in the physical characteristics of river basin, melting of ice, drought, flood, extreme weather events and alteration in groundwater recharge. In India, water demand for domestic, industrial and agriculture purposes have already increased many folds which are also influencing the water resource system. In addition, climate change has induced the surface temperature of the Indian subcontinent by 0.48 ºC in just last century. However, Ganges–Brahmaputra–Meghna (GBM) river basins have great importance for their exceptional hydro-geological settings and deltaic floodplain wetland ecosystems which support 700 million people in Asia. The climatic variability like alterations in precipitation and temperature over GBM river basins has been observed which signifies the GBM as one of the most vulnerable areas in the world under the potential impact of climate change. Consequently, alteration in river discharge, higher runoff generation, low groundwater recharge and melting of glaciers over GBM river basin could be observed in near future. The consequence of these changes due to climate change over GBM basin may create serious water problem for Indian sub-continents. This paper reviews the literature on the historical climate variations and how climate change affects the hydrological characteristics of different river basins.


2018 ◽  
Vol 38 (1) ◽  
pp. 105-114 ◽  
Author(s):  
Gloria C. Okafor ◽  
Kingsley N. Ogbu

AbstractChanges in runoff trends have caused severe water shortages and ecological problems in agriculture and human well-being in Nigeria. Understanding the long-term (inter-annual to decadal) variations of water availability in river basins is paramount for water resources management and climate change adaptation. Climate change in Northern Nigeria could lead to change of the hydrological cycle and water availability. Moreover, the linkage between climatic changes and streamflow fluctuations is poorly documented in this area. Therefore, this study examined temporal trends in rainfall, temperature and runoff records of Kaduna River basin. Using appropriate statistical tools and participatory survey, trends in streamflow and their linkages with the climate indices were explored to determine their amplifying impacts on water availability and impacts on livelihoods downstream the basin. Analysis indicate variable rainfall trend with significant wet and dry periods. Unlike rainfall, temperature showed annual and seasonal scale statistically increasing trend. Runoff exhibit increasing tendency but only statistically significant on annual scale as investigated with Mann–Kendall trend test. Sen’s estimator values stood in agreement with Mann–Kendall test for all variables. Kendall tau and partial correlation results revealed the influence of climatic variables on runoff. Based on the survey, some of the hydrological implications and current water stress conditions of these fluctuations for the downstream inhabitants were itemized. With increasing risk of climate change and demand for water, we therefore recommend developing adaptive measures in seasonal regime of water availability and future work on modelling of the diverse hydrological characteristics of the entire basin.


2020 ◽  
Vol 12 (4) ◽  
pp. 709 ◽  
Author(s):  
Abhishek Banerjee ◽  
Ruishan Chen ◽  
Michael E. Meadows ◽  
R.B. Singh ◽  
Suraj Mal ◽  
...  

This paper analyses the spatio-temporal trends and variability in annual, seasonal, and monthly rainfall with corresponding rainy days in Bhilangana river basin, Uttarakhand Himalaya, based on stations and two gridded products. Station-based monthly rainfall and rainy days data were obtained from the India Meteorological Department (IMD) for the period from 1983 to 2008 and applied, along with two daily rainfall gridded products to establish temporal changes and spatial associations in the study area. Due to the lack of more recent ground station rainfall measurements for the basin, gridded data were then used to establish monthly rainfall spatio-temporal trends for the period 2009 to 2018. The study shows all surface observatories in the catchment experienced an annual decreasing trend in rainfall over the 1983 to 2008 period, averaging 15.75 mm per decade. Analysis of at the monthly and seasonal trend showed reduced rainfall for August and during monsoon season as a whole (10.13 and 11.38 mm per decade, respectively); maximum changes were observed in both monsoon and winter months. Gridded rainfall data were obtained from the Climate Hazard Infrared Group Precipitation Station (CHIRPS) and Precipitation Estimation from Remotely Sensed Information Using Artificial Neural Networks-Climate Data Record (PERSIANN-CDR). By combining the big data analytical potential of Google Earth Engine (GEE), we compare spatial patterns and temporal trends in observational and modelled precipitation and demonstrate that remote sensing products can reliably be used in inaccessible areas where observational data are scarce and/or temporally incomplete. CHIRPS reanalysis data indicate that there are in fact three significantly distinct annual rainfall periods in the basin, viz. phase 1: 1983 to 1997 (relatively high annual rainfall); phase 2: 1998 to 2008 (drought); phase 3: 2009 to 2018 (return to relatively high annual rainfall again). By comparison, PERSIANN-CDR data show reduced annual and winter precipitation, but no significant changes during the monsoon and pre-monsoon seasons from 1983 to 2008. The major conclusions of this study are that rainfall modelled using CHIRPS corresponds well with the observational record in confirming the decreased annual and seasonal rainfall, averaging 10.9 and 7.9 mm per decade respectively between 1983 and 2008, although there is a trend (albeit not statistically significant) to higher rainfall after the marked dry period between 1998 and 2008. Long-term variability in rainfall in the Bhilangana river basin has had critical impacts on the environment arising from water scarcity in this mountainous region.


Sign in / Sign up

Export Citation Format

Share Document