Detection and diagnosis of brain tumors‐framework using extreme machine learning and CANFIS classification algorithms

Author(s):  
V. Jeevanantham ◽  
G. MohanBabu
Entropy ◽  
2019 ◽  
Vol 21 (5) ◽  
pp. 513 ◽  
Author(s):  
Héctor D. Menéndez ◽  
José Luis Llorente

The quality of anti-virus software relies on simple patterns extracted from binary files. Although these patterns have proven to work on detecting the specifics of software, they are extremely sensitive to concealment strategies, such as polymorphism or metamorphism. These limitations also make anti-virus software predictable, creating a security breach. Any black hat with enough information about the anti-virus behaviour can make its own copy of the software, without any access to the original implementation or database. In this work, we show how this is indeed possible by combining entropy patterns with classification algorithms. Our results, applied to 57 different anti-virus engines, show that we can mimic their behaviour with an accuracy close to 98% in the best case and 75% in the worst, applied on Windows’ disk resident malware.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Elisabeth Sartoretti ◽  
Thomas Sartoretti ◽  
Michael Wyss ◽  
Carolin Reischauer ◽  
Luuk van Smoorenburg ◽  
...  

AbstractWe sought to evaluate the utility of radiomics for Amide Proton Transfer weighted (APTw) imaging by assessing its value in differentiating brain metastases from high- and low grade glial brain tumors. We retrospectively identified 48 treatment-naïve patients (10 WHO grade 2, 1 WHO grade 3, 10 WHO grade 4 primary glial brain tumors and 27 metastases) with either primary glial brain tumors or metastases who had undergone APTw MR imaging. After image analysis with radiomics feature extraction and post-processing, machine learning algorithms (multilayer perceptron machine learning algorithm; random forest classifier) with stratified tenfold cross validation were trained on features and were used to differentiate the brain neoplasms. The multilayer perceptron achieved an AUC of 0.836 (receiver operating characteristic curve) in differentiating primary glial brain tumors from metastases. The random forest classifier achieved an AUC of 0.868 in differentiating WHO grade 4 from WHO grade 2/3 primary glial brain tumors. For the differentiation of WHO grade 4 tumors from grade 2/3 tumors and metastases an average AUC of 0.797 was achieved. Our results indicate that the use of radiomics for APTw imaging is feasible and the differentiation of primary glial brain tumors from metastases is achievable with a high degree of accuracy.


Author(s):  
A. Khanwalkar ◽  
R. Soni

Purpose: Diabetes is a chronic disease that pays for a large proportion of the nation's healthcare expenses when people with diabetes want medical care continuously. Several complications will occur if the polymer disorder is not treated and unrecognizable. The prescribed condition leads to a diagnostic center and a doctor's intention. One of the real-world subjects essential is to find the first phase of the polytechnic. In this work, basically a survey that has been analyzed in several parameters within the poly-infected disorder diagnosis. It resembles the classification algorithms of data collection that plays an important role in the data collection method. Automation of polygenic disorder analysis, as well as another machine learning algorithm. Design/methodology/approach: This paper provides extensive surveys of different analogies which have been used for the analysis of medical data, For the purpose of early detection of polygenic disorder. This paper takes into consideration methods such as J48, CART, SVMs and KNN square, this paper also conducts a formal surveying of all the studies, and provides a conclusion at the end. Findings: This surveying has been analyzed on several parameters within the poly-infected disorder diagnosis. It resembles that the classification algorithms of data collection plays an important role in the data collection method in Automation of polygenic disorder analysis, as well as another machine learning algorithm. Practical implications: This paper will help future researchers in the field of Healthcare, specifically in the domain of diabetes, to understand differences between classification algorithms. Originality/value: This paper will help in comparing machine learning algorithms by going through results and selecting the appropriate approach based on requirements.


2021 ◽  
Vol 23 (Supplement_6) ◽  
pp. vi224-vi224
Author(s):  
Alexis Morell ◽  
Daniel Eichberg ◽  
Ashish Shah ◽  
Evan Luther ◽  
Victor Lu ◽  
...  

Abstract BACKGROUND Developing mapping tools that allow identification of traditional or non-traditional eloquent areas is necessary to minimize the risk of postoperative neurologic deficits. The objective of our study is to evaluate the use of a novel cloud-based platform that uses machine learning to identify cerebral networks in patients with brain tumors. METHODS We retrospectively included all adult patients who underwent surgery for brain tumor resection or thermal ablation at our Institution between the 16th of February and the 15th of May of 2021. Pre and postoperative contrast-enhanced MRI with T1-weighted and high-resolution Diffusion Tensor Imaging (DTI) sequences were uploaded into the Quicktome platform. After processing the data, we categorized the integrity of seven large-scale brain networks: sensorimotor, visual, ventral attention, central executive, default mode, dorsal attention and limbic. Affected networks were correlated with pre and postoperative clinical data, including neurologic deficits. RESULTS Thirty-five (35) patients were included in the study. The average age of the sample was 63.2 years, and 51.4% (n=18) were females. The most affected network was the central executive network (40%), followed by the dorsal attention and default mode networks (31.4%), while the least affected were the visual (11%) and ventral attention networks (17%). Patients with preoperative deficits showed a significantly higher number of altered networks before the surgery (p=0.021), compared to patients without deficits. In addition, we found that patients without neurologic deficits had an average of 2.06 large-scale networks affected, with 75% of them not being related to traditional eloquent areas as the sensorimotor, language or visual circuits. CONCLUSIONS The Quicktome platform is a practical tool that allows automatic visualization of large-scale brain networks in patients with brain tumors. Although further studies are needed, it may assist in the surgical management of traditional and non-traditional eloquent areas.


Author(s):  
Sarmad Mahar ◽  
Sahar Zafar ◽  
Kamran Nishat

Headnotes are the precise explanation and summary of legal points in an issued judgment. Law journals hire experienced lawyers to write these headnotes. These headnotes help the reader quickly determine the issue discussed in the case. Headnotes comprise two parts. The first part comprises the topic discussed in the judgment, and the second part contains a summary of that judgment. In this thesis, we design, develop and evaluate headnote prediction using machine learning, without involving human involvement. We divided this task into a two steps process. In the first step, we predict law points used in the judgment by using text classification algorithms. The second step generates a summary of the judgment using text summarization techniques. To achieve this task, we created a Databank by extracting data from different law sources in Pakistan. We labelled training data generated based on Pakistan law websites. We tested different feature extraction methods on judiciary data to improve our system. Using these feature extraction methods, we developed a dictionary of terminology for ease of reference and utility. Our approach achieves 65% accuracy by using Linear Support Vector Classification with tri-gram and without stemmer. Using active learning our system can continuously improve the accuracy with the increased labelled examples provided by the users of the system.


Sign in / Sign up

Export Citation Format

Share Document