Interpretability of deep neural networks used for the diagnosis of Alzheimer's disease

Author(s):  
Tomáš Pohl ◽  
Marek Jakab ◽  
Wanda Benesova
2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Nicasia Beebe-Wang ◽  
Safiye Celik ◽  
Ethan Weinberger ◽  
Pascal Sturmfels ◽  
Philip L. De Jager ◽  
...  

AbstractDeep neural networks (DNNs) capture complex relationships among variables, however, because they require copious samples, their potential has yet to be fully tapped for understanding relationships between gene expression and human phenotypes. Here we introduce an analysis framework, namely MD-AD (Multi-task Deep learning for Alzheimer’s Disease neuropathology), which leverages an unexpected synergy between DNNs and multi-cohort settings. In these settings, true joint analysis can be stymied using conventional statistical methods, which require “harmonized” phenotypes and tend to capture cohort-level variations, obscuring subtler true disease signals. Instead, MD-AD incorporates related phenotypes sparsely measured across cohorts, and learns interactions between genes and phenotypes not discovered using linear models, identifying subtler signals than cohort-level variations which can be uniquely recapitulated in animal models and across tissues. We show that MD-AD exploits sex-specific relationships between microglial immune response and neuropathology, providing a nuanced context for the association between inflammatory genes and Alzheimer’s Disease.


2019 ◽  
Author(s):  
Javier de Velasco Oriol ◽  
Edgar E. Vallejo ◽  
Karol Estrada ◽  

AbstractAlzheimer’s disease (AD) is the leading form of dementia. Over 25 million cases have been estimated worldwide and this number is predicted to increase two-fold every 20 years. Even though there is a variety of clinical markers available for the diagnosis of AD, the accurate and timely diagnosis of this disease remains elusive. Recently, over a dozen of genetic variants predisposing to the disease have been identified by genome-wide association studies. However, these genetic variants only explain a small fraction of the estimated genetic component of the disease. Therefore, useful predictions of AD from genetic data could not rely on these markers exclusively as they are not sufficiently informative predictors. In this study, we propose the use of deep neural networks for the prediction of late-onset Alzheimer’s disease from a large number of genetic variants. Experimental results indicate that the proposed model holds promise to produce useful predictions for clinical diagnosis of AD.


Heliyon ◽  
2021 ◽  
Vol 7 (2) ◽  
pp. e06226
Author(s):  
Diedre Carmo ◽  
Bruna Silva ◽  
Clarissa Yasuda ◽  
Letícia Rittner ◽  
Roberto Lotufo

2008 ◽  
Vol 2 (3) ◽  
pp. 183-191 ◽  
Author(s):  
Eliasz Engelhardt ◽  
Jerson Laks

Abstract Alzheimer's disease is a widely studied disorder with research focusing on cognitive and functional impairments, behavioral and psychological symptoms, and on abnormal motor manifestations. Despite the importance of autonomic dysfunctions they have received less attention in systematic studies. The underlying neurodegenerative process of AD, mainly affecting cortical areas, has been studied for more than one century. However, autonomic-related structures have not been studied neuropathologically with the same intensity. The autonomic nervous system governs normal visceral functions, and its activity is expressed in relation to homeostatic needs of the organism's current physical and mental activities. The disease process leads to autonomic dysfunction or dysautonomy possibly linked to increased rates of morbidity and mortality. Objective: The aim of this review was to analyze the cortical, subcortical, and more caudal autonomic-related regions, and the specific neurodegenerative process in Alzheimer's disease that affects these structures. Methods: A search for papers addressing autonomic related-structures affected by Alzheimer's degeneration, and under normal condition was performed through MedLine, PsycInfo and Lilacs, on the bibliographical references of papers of interest, together with a manual search for classic studies in older journals and books, spanning over a century of publications. Results: The main central autonomic-related structures are described, including cortical areas, subcortical structures (amygdala, thalamus, hypothalamus, brainstem, cerebellum) and spinal cord. They constitute autonomic neural networks that underpin vital functions. These same structures, affected by specific Alzheimer's disease neurodegeneration, were also described in detail. The autonomic-related structures present variable neurodegenerative changes that develop progressively according to the degenerative stages described by Braak and Braak. Conclusion: The neural networks constituted by the central autonomic-related structures, when damaged by progressive neurodegeneration, represent the neuropathological substrate of autonomic dysfunction. The presence of this dysfunction and its possible relationship with higher rates of morbidity, and perhaps of mortality, in affected subjects must be kept in mind when managing Alzheimer's patients.


Sign in / Sign up

Export Citation Format

Share Document