scholarly journals Overproduction of human Cu/Zn-superoxide dismutase in transfected cells: extenuation of paraquat-mediated cytotoxicity and enhancement of lipid peroxidation.

1986 ◽  
Vol 5 (3) ◽  
pp. 615-622 ◽  
Author(s):  
O. Elroy-Stein ◽  
Y. Bernstein ◽  
Y. Groner
2019 ◽  
Vol 316 (3) ◽  
pp. H710-H721 ◽  
Author(s):  
Victoria L. Nasci ◽  
Sandra Chuppa ◽  
Lindsey Griswold ◽  
Kathryn A. Goodreau ◽  
Ranjan K. Dash ◽  
...  

Cardiovascular-related pathologies are the single leading cause of death in patients with chronic kidney disease (CKD). Previously, we found that a 5/6th nephrectomy model of CKD leads to an upregulation of miR-21-5p in the left ventricle, targeting peroxisome proliferator-activated receptor-α and altering the expression of numerous transcripts involved with fatty acid oxidation and glycolysis. In the present study, we evaluated the potential for knockdown or overexpression of miR-21-5p to regulate lipid content, lipid peroxidation, and mitochondrial respiration in H9C2 cells. Cells were transfected with anti-miR-21-5p (40 nM), pre-miR-21-5p (20 nM), or the appropriate scrambled oligonucleotide controls before lipid treatment in culture or as part of the Agilent Seahorse XF fatty acid oxidation assay. Overexpression of miR-21-5p attenuated the lipid-induced increase in cellular lipid content, whereas suppression of miR-21-5p augmented it. The abundance of malondialdehyde, a product of lipid peroxidation, was significantly increased with lipid treatment in control cells but attenuated in pre-miR-21-5p-transfected cells. This suggests that miR-21-5p reduces oxidative stress. The cellular oxygen consumption rate (OCR) was increased in both pre-miR-21-5p- and anti-miR-21-5p-transfected cells. Levels of intracellular ATP were significantly higher in anti-mR-21-5p-transfected cells. Pre-miR-21-5p blocked additional increases in OCR in response to etomoxir and palmitic acid. Conversely, anti-miR-21-5p-transfected cells exhibited reduced OCR with both etomoxir and palmitic acid, and the glycolytic capacity was concomitantly reduced. Together, these results indicate that overexpression of miR-21-5p attenuates both lipid content and lipid peroxidation in H9C2 cells. This likely occurs by reducing cellular lipid uptake and utilization, shifting cellular metabolism toward reliance on the glycolytic pathway. NEW & NOTEWORTHY Both overexpression and suppression of miR-21-5p augment basal and maximal mitochondrial respiration. Our data suggest that reliance on glycolytic and fatty acid oxidation pathways can be modulated by the abundance of miR-21-5p within the cell. miR-21-5p regulation of mitochondrial respiration can be modulated by extracellular lipids.


2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
Israel Pérez-Torres ◽  
Verónica Guarner-Lans ◽  
Alejandra Zúñiga-Muñoz ◽  
Rodrigo Velázquez Espejel ◽  
Alfredo Cabrera-Orefice ◽  
...  

We report the effect of cross-sex hormonal replacement on antioxidant enzymes from rat retroperitoneal fat adipocytes. Eight rats of each gender were assigned to each of the following groups: control groups were intact female or male (F and M, resp.). Experimental groups were ovariectomized F (OvxF), castrated M (CasM), OvxF plus testosterone (OvxF + T), and CasM plus estradiol (CasM + E2) groups. After sacrifice, retroperitoneal fat was dissected and processed for histology. Adipocytes were isolated and the following enzymatic activities were determined: Cu-Zn superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione-S-transferase (GST), and glutathione reductase (GR). Also, glutathione (GSH) and lipid peroxidation (LPO) were measured. In OvxF, retroperitoneal fat increased and adipocytes were enlarged, while in CasM rats a decrease in retroperitoneal fat and small adipocytes are observed. The cross-sex hormonal replacement in F rats was associated with larger adipocytes and a further decreased activity of Cu-Zn SOD, CAT, GPx, GST, GR, and GSH, in addition to an increase in LPO. CasM + E2exhibited the opposite effects showing further activation antioxidant enzymes and decreases in LPO. In conclusion, E2deficiency favors an increase in retroperitoneal fat and large adipocytes. Cross-sex hormonal replacement in F rats aggravates the condition by inhibiting antioxidant enzymes.


2020 ◽  
Vol 21 (12) ◽  
pp. 4374
Author(s):  
Giovanna Menduti ◽  
Alessandra Vitaliti ◽  
Concetta Rosa Capo ◽  
Daniele Lettieri-Barbato ◽  
Katia Aquilano ◽  
...  

Succinate semialdehyde dehydrogenase (SSADH) is a mitochondrial enzyme, encoded by ALDH5A1, mainly involved in γ-aminobutyric acid (GABA) catabolism and energy supply of neuronal cells, possibly contributing to antioxidant defense. This study aimed to further investigate the antioxidant role of SSADH, and to verify if common SNPs of ALDH5A1 may affect SSADH activity, stability, and mitochondrial function. In this study, we used U87 glioblastoma cells as they represent a glial cell line. These cells were transiently transfected with a cDNA construct simultaneously harboring three SNPs encoding for a triple mutant (TM) SSADH protein (p.G36R/p.H180Y/p.P182L) or with wild type (WT) cDNA. SSADH activity and protein level were measured. Cell viability, lipid peroxidation, mitochondrial morphology, membrane potential (ΔΨ), and protein markers of mitochondrial stress were evaluated upon Paraquat treatment, in TM and WT transfected cells. TM transfected cells show lower SSADH protein content and activity, fragmented mitochondria, higher levels of peroxidized lipids, and altered ΔΨ than WT transfected cells. Upon Paraquat treatment, TM cells show higher cell death, lipid peroxidation, 4-HNE protein adducts, and lower ΔΨ, than WT transfected cells. These results reinforce the hypothesis that SSADH contributes to cellular antioxidant defense; furthermore, common SNPs may produce unstable, less active SSADH, which could per se negatively affect mitochondrial function and, under oxidative stress conditions, fail to protect mitochondria.


2013 ◽  
Vol 64 (4) ◽  
pp. 553-559 ◽  
Author(s):  
Seyed Fazel Nabavi ◽  
Solomon Habtemariam ◽  
Antoni Sureda ◽  
Akbar Hajizadeh Moghaddam ◽  
Maria Daglia ◽  
...  

Abstract Gallic acid has been identified as an antioxidant component of the edible and medicinal plant Peltiphyllum peltatum. The present study examined its potential protective role against sodium fluoride (NaF)-induced oxidative stress in rat erythrocytes. Oxidative stress was induced by NaF administration through drinking water (1030.675 mg m-3 for one week). Gallic acid at 10 mg kg-1 and 20 mg kg-1 and vitamin C for positive controls (10 mg kg-1) were administered daily intraperitoneally for one week prior to NaF administration. Thiobarbituric acid reactive substances, antioxidant enzyme activities (superoxide dismutase and catalase), and the level of reduced glutathione were evaluated in rat erythrocytes. Lipid peroxidation in NaF-exposed rats significantly increased (by 88.8 %) when compared to the control group (p<0.05). Pre-treatment with gallic acid suppressed lipid peroxidation in erythrocytes in a dose-dependent manner. Catalase and superoxide dismutase enzyme activities and glutathione levels were reduced by NaF intoxication by 54.4 %, 63.69 %, and 42 % (p<0.001; vs. untreated control group), respectively. Pre-treatment with gallic acid or vitamin C significantly attenuated the deleterious effects. Gallic acid isolated from Peltiphyllum peltatum and vitamin C mitigated the NaF-induced oxidative stress in rat erythrocytes.


2003 ◽  
Vol 22 (6) ◽  
pp. 423-427 ◽  
Author(s):  
Mary Otsyula ◽  
Matthew S. King ◽  
Tonya G. Ketcham ◽  
Ruth A. Sanders ◽  
John B. Watkins

Two of the models used in current diabetes research include the hypergalactosemic rat and the hyperglucosemic, streptozotocin-induced diabetic rat. Few studies, however, have examined the concurrence of these two models regarding the effects of elevated hexoses on biomarkers of oxidative stress. This study compared the activities of superoxide dismutase, catalase, glutathione peroxidase, and glutathione reductase and the concentrations of glutathione, glutathione disulfide, and thiobarbituric acid reactants (as a measure of lipid peroxidation) in liver, kidney, and heart of Sprague-Dawley rats after 60 days of either a 50% galactose diet or insulin deficiency caused by streptozotocin injection. Most rats from both models developed bilateral cataracts. Blood glucose and glycosy-lated hemoglobin A1c concentrations were elevated in streptozotocin diabetic rats. Streptozotocin diabetic rats exhibited elevated activities of renal superoxide dismutase, cardiac catalase, and renal and cardiac glutathione peroxidase, as well as elevated hepatic lipid peroxidation. Insulin treatment of streptozotocin-induced diabetic rats normalized altered markers. In galactosemic rats, hepatic lipid peroxidation was increased whereas glutathione reductase activity was diminished. Glutathione levels in liver were decreased in diabetic rats but elevated in the galactosemic rats, whereas hepatic glutathione disulfide concentrations were decreased much more in diabetes than in galactosemia. Insulin treatment reversed/prevented all changes caused by streptozotocin-induced diabetes. Lack of concomitance in these data indicate that the 60-day galactose-fed rat is not experiencing the same oxidative stress as the streptozotocin diabetic rat, and that investigators must be cautious drawing conclusions regarding the concurrence of the effects of the two animal models on oxidative stress biomarkers.


2011 ◽  
Vol 144 (1-3) ◽  
pp. 570-579 ◽  
Author(s):  
Jianbo Cheng ◽  
Hui Ma ◽  
Caiyun Fan ◽  
Zijun Zhang ◽  
Zhihai Jia ◽  
...  

2016 ◽  
pp. 75-78
Author(s):  
Liliia Babynets ◽  
Tetiana Maevska

The study proved that patients with combined progress of osteoarthritis and chronic pancreatitis have reliable top-level activation of lipid peroxidation in terms of malonyc aldehyde and tissue destruction in terms of oxyproline, weakening of the antioxidant level (in terms of superoxide dismutase and SH-groups) and activation parameters of catalase and ceruloplasmin (p<0,05). The authentic predictority of patients biological age, duration of combined clinical courses, the functional capacity of the pancreas in terms of fecal α-elastase, structural state by ultrasound criteria for progression effects of oxidative stress, accumulation oxyproline activation parameters catalase and ceruloplasmin, which statistically was reflected by the presence of mainly moderate of significant correlations between these groups of indicators have been identified.


2003 ◽  
Vol 44 (6) ◽  
pp. 979 ◽  
Author(s):  
Gökhan Metin ◽  
Pınar Atukeren ◽  
A. Ata Alturfan ◽  
Tevfik Gülyaşar ◽  
Mehmet Kaya ◽  
...  

1992 ◽  
Vol 262 (3) ◽  
pp. H806-H812 ◽  
Author(s):  
K. Todoki ◽  
E. Okabe ◽  
T. Kiyose ◽  
T. Sekishita ◽  
H. Ito

To understand the direct involvement of free radicals causing reduction in endothelium-dependent relaxation of isolated canine coronary ring preparations, this study was undertaken to examine the effect of free radicals generated from dihydroxy fumarate (DHF) plus Fe(3+)-ADP or from H2O2 plus FeSO4. The vasodilators (acetylcholine, bradykinin, A23187, and nitroglycerin) were given after DHF/Fe(3+)-ADP or H2O2/FeSO4 was removed from the organ chamber. The earlier DHF/Fe(3+)-ADP exposure produced an attenuation of the relaxation of the rings induced by acetylcholine, bradykinin, or A23187 but not of the relaxation induced by nitroglycerin. The observed effect of previous DHF/Fe(3+)-ADP exposure was significantly protected in the vessels isolated from the dogs treated with alpha-tocopherol. In the experiments for assessing the effect of various scavengers, 1O2 scavenger histidine or iron chelator deferoxamine effectively protected the attenuation induced by DHF/Fe(3+)-ADP exposure of the relaxation elicited by acetylcholine; superoxide dismutase (SOD), catalase, or dimethyl sulfoxide (DMSO) had no effect on this system. Furthermore, the relaxation elicited by acetylcholine, but not nitroglycerin, was significantly attenuated by the earlier exposure to .OH generated by Fenton's reagent (H2O2+FeSO4); the attenuation was significantly protected by DMSO. These results are consistent with the view that .OH, 1O2, and/or iron-dependent reactive species selectively damage endothelium-dependent relaxation as opposed to endothelium-independent relaxation in endothelium-intact coronary ring preparations. It is also postulated that lipid peroxidation may be responsible for this effect.


Sign in / Sign up

Export Citation Format

Share Document