scholarly journals Intermittent Parathyroid Hormone After Prolonged Alendronate Treatment Induces Substantial New Bone Formation and Increases Bone Tissue Heterogeneity in Ovariectomized Rats

2017 ◽  
Vol 32 (8) ◽  
pp. 1703-1715 ◽  
Author(s):  
Allison R Altman-Singles ◽  
Yonghoon Jeong ◽  
Wei-Ju Tseng ◽  
Chantal MJ de Bakker ◽  
Hongbo Zhao ◽  
...  
2008 ◽  
Vol 396-398 ◽  
pp. 7-10 ◽  
Author(s):  
Ana Maria Minarelli Gaspar ◽  
Sybele Saska ◽  
R. García Carrodeguas ◽  
A.H. De Aza ◽  
P. Pena ◽  
...  

The biological response following subcutaneous and bone implantation of β-wollastonite(β-W)-doped α-tricalcium phosphate bioceramics in rats was evaluated. Tested materials were: tricalcium phosphate (TCP), consisting of a mixture of α- and β-polymorphs; TCP doped with 5 wt. % of β-W (TCP5W), composed of α-TCP as only crystalline phase; and TCP doped with 15 wt. % of β-W (TCP15), containing crystalline α-TCP and β-W. Cylinders of 2x1 mm were implanted in tibiae and backs of adult male Rattus norvegicus, Holtzman rats. After 7, 30 and 120 days, animals were sacrificed and the tissue blocks containing the implants were excised, fixed and processed for histological examination. TCP, TCP5W and TCP15W implants were biocompatible but neither bioactive nor biodegradable in rat subcutaneous tissue. They were not osteoinductive in connective tissue either. However, in rat bone tissue β-W-doped α-TCP implants (TCP5W and TCP15W) were bioactive, biodegradable and osteoconductive. The rates of biodegradation and new bone formation observed for TCP5W and TCP15W implants in rat bone tissue were greater than for non-doped TCP.


2006 ◽  
Vol 16 (7) ◽  
pp. 1799-1802 ◽  
Author(s):  
Kimberly O. Cameron ◽  
Bruce A. Lefker ◽  
Margaret Y. Chu-Moyer ◽  
David T. Crawford ◽  
Paul DaSilva Jardine ◽  
...  

2010 ◽  
Vol 4 (6) ◽  
pp. 913-922 ◽  
Author(s):  
Sittisak Honsawek ◽  
Piyanuch Bumrungpanichthaworn ◽  
Voranuch Thanakit ◽  
Vachiraporn Kunrangseesomboon ◽  
Supamongkon Muchmee ◽  
...  

Abstract Background: Demineralized bone matrix (DBM) is extensively used in orthopedic, periodontal, and maxillofacial application and investigated as a material to induce new bone formation. Small intestinal submucosa (SIS) derived from the submucosa layer of porcine intestine has widely utilized as biomaterial with minimum immune response. Objectives: Determine the osteoinductive potential of SIS, DBM, SIS/DBM composites in the in vitro cell culture and in vivo animal bioassays for bone tissue engineering. Materials and methods: Human periosteal (HPO) cells were treated in the absence or presence SIS, DBM, and SIS/DBM. Cell proliferation was examined by direct cell counting. Osteoblast differentiation of the HPO cells was analyzed with alkaline phosphatase activity assay. The Wistar rat muscle implant model was used to evaluate the osteoinductive potential of SIS, DBM, and SIS/DBM composites. Results: HPO cells could differentiate along osteogenic lineage when treated with either DBM or SIS/DBM. SIS/ DBM had a tendency to promote more cellular proliferation and osteoblast differentiation than the other treatments. In Wistar rat bioassay, SIS showed no new bone formation and the implants were surrounded by fibrous tissues. DBM demonstrated new bone formation along the edge of old DBM particles. SIS/DBM composite exhibited high osteoinductivity, and the residual SIS/DBM was surrounded by osteoid-like matrix and newly formed bone. Conclusion: DBM and SIS/DBM composites could retain their osteoinductive capability. SIS/DBM scaffolds may provide an alternative approach for bone tissue engineering.


2020 ◽  
Vol 8 (5) ◽  
pp. 951-960 ◽  
Author(s):  
Ji Min Seok ◽  
Thanavel Rajangam ◽  
Jae Eun Jeong ◽  
Sinyoung Cheong ◽  
Sang Min Joo ◽  
...  

Scaffold porosity has played a key role in bone tissue engineering aimed at effective tissue regeneration, by promoting cell attachment, proliferation, and osteogenic differentiation for new bone formation.


2018 ◽  
Vol 67 (3) ◽  
pp. 169-184 ◽  
Author(s):  
Tomoka Hasegawa ◽  
Tomomaya Yamamoto ◽  
Sadaoki Sakai ◽  
Yukina Miyamoto ◽  
Hiromi Hongo ◽  
...  

Summary Intermittent administration of human parathyroid hormone (1-34) (hPTH(1-34)) promotes anabolic action in bone by stimulating bone remodeling, while eldecalcitol, an analog of active vitamin D3, suppresses osteoclastic bone resorption, and forms new bone by minimodeling. We have examined the biological effects of combined administration of eldecalcitol and hPTH(1-34) on 9-week-old Wistar rats that underwent an ovariectomy (OVX) or Sham operation. They were divided into a Sham group, OVX with vehicle (OVX group), OVX with 10 µg/kg/day of hPTH(1-34) (PTH group), OVX with 20 ng/kg/day of eldecalcitol (eldecalcitol group) or OVX with 10 μg/kg/day of hPTH(1-34), and 20 ng/kg/day of eldecalcitol (combined group) for 4 or 8 weeks. As a consequence, the combined group showed a marked increase in bone volume/tissue volume (BV/TV), trabecular thickness (Tb.Th), and trabecular number (Tb.N) than OVX and had the highest bone mineral density (BMD) compared with other groups. OVX and PTH groups exhibited a high osteoblastic surface/bone surface (Ob.S/BS), mineral apposition rate (MAR), and bone formation rate/bone surface (BFR/BS) indices and many TRAP-reactive osteoclasts. Contrastingly, eldecalcitol and combined groups tended to attenuate the indices of osteoclastic surface/bone surface (Oc.S/BS) and Ob.S/BS than that the other groups. The combined group revealed histological profiles of minimodeling- and remodeling-based bone formation. Thus, the combined administration of eldecalcitol and hPTH(1-34) augments their anabolic effects by means of minimodeling and remodeling.


1995 ◽  
Vol 269 (3) ◽  
pp. E438-E442 ◽  
Author(s):  
C. H. Turner ◽  
I. Owan ◽  
Y. Takano

Bone tissue can detect and respond to its mechanical environment, but there is no consensus for how bone cells detect mechanical loads. Some think that cells sense tissue deformation (strain) and respond when strain is abnormally high. However, strains in bone tissue are usually very small, and it is questionable whether bone cells are sensitive enough to detect them. Another theory suggests that mechanical loads are coupled to the bone cells by stress-generated fluid flow within the bone tissue, which is dependent on the rate of change of bone strain. We applied bending loads to the tibiae of adult rats to create equivalent peak strains in the bone tissue but with varied rates of strain. Bone formation was significantly increased in the two experimental groups when the highest strain rates were compared with lower strain rates (P < 0.01), and the amount of new bone formation was directly proportional to the rate of strain in the bone tissue. These results suggest that relatively large strains alone are not sufficient to activate bone cells. High strain rates and possibly stress-generated fluid flow are required to stimulate new bone formation.


Sign in / Sign up

Export Citation Format

Share Document