scholarly journals Porcupine inhibitors impair trabecular and cortical bone mass and strength in mice

2018 ◽  
Vol 238 (1) ◽  
pp. 13-23 ◽  
Author(s):  
Thomas Funck-Brentano ◽  
Karin H Nilsson ◽  
Robert Brommage ◽  
Petra Henning ◽  
Ulf H Lerner ◽  
...  

WNT signaling is involved in the tumorigenesis of various cancers and regulates bone homeostasis. Palmitoleoylation of WNTs by Porcupine is required for WNT activity. Porcupine inhibitors are under development for cancer therapy. As the possible side effects of Porcupine inhibitors on bone health are unknown, we determined their effects on bone mass and strength. Twelve-week-old C57BL/6N female mice were treated by the Porcupine inhibitors LGK974 (low dose = 3 mg/kg/day; high dose = 6 mg/kg/day) or Wnt-C59 (10 mg/kg/day) or vehicle for 3 weeks. Bone parameters were assessed by serum biomarkers, dual-energy X-ray absorptiometry, µCT and histomorphometry. Bone strength was measured by the 3-point bending test. The Porcupine inhibitors were well tolerated demonstrated by normal body weight. Both doses of LGK974 and Wnt-C59 reduced total body bone mineral density compared with vehicle treatment (P < 0.001). Cortical thickness of the femur shaft (P < 0.001) and trabecular bone volume fraction in the vertebral body (P < 0.001) were reduced by treatment with LGK974 or Wnt-C59. Porcupine inhibition reduced bone strength in the tibia (P < 0.05). The cortical bone loss was the result of impaired periosteal bone formation and increased endocortical bone resorption and the trabecular bone loss was caused by reduced trabecular bone formation and increased bone resorption. Porcupine inhibitors exert deleterious effects on bone mass and strength caused by a combination of reduced bone formation and increased bone resorption. We suggest that cancer targeted therapies using Porcupine inhibitors may increase the risk of fractures.

2015 ◽  
Vol 112 (48) ◽  
pp. 14972-14977 ◽  
Author(s):  
Sofia Movérare-Skrtic ◽  
Jianyao Wu ◽  
Petra Henning ◽  
Karin L. Gustafsson ◽  
Klara Sjögren ◽  
...  

Wingless-type MMTV integration site family (WNT)16 is a key regulator of bone mass with high expression in cortical bone, and Wnt16−/− mice have reduced cortical bone mass. As Wnt16 expression is enhanced by estradiol treatment, we hypothesized that the bone-sparing effect of estrogen in females is WNT16-dependent. This hypothesis was tested in mechanistic studies using two genetically modified mouse models with either constantly high osteoblastic Wnt16 expression or no Wnt16 expression. We developed a mouse model with osteoblast-specific Wnt16 overexpression (Obl-Wnt16). These mice had several-fold elevated Wnt16 expression in both trabecular and cortical bone compared with wild type (WT) mice. Obl-Wnt16 mice displayed increased total body bone mineral density (BMD), surprisingly caused mainly by a substantial increase in trabecular bone mass, resulting in improved bone strength of vertebrae L3. Ovariectomy (ovx) reduced the total body BMD and the trabecular bone mass to the same degree in Obl-Wnt16 mice and WT mice, suggesting that the bone-sparing effect of estrogen is WNT16-independent. However, these bone parameters were similar in ovx Obl-Wnt16 mice and sham operated WT mice. The role of WNT16 for the bone-sparing effect of estrogen was also evaluated in Wnt16−/− mice. Treatment with estradiol increased the trabecular and cortical bone mass to a similar extent in both Wnt16−/− and WT mice. In conclusion, the bone-sparing effects of estrogen and WNT16 are independent of each other. Furthermore, loss of endogenous WNT16 results specifically in cortical bone loss, whereas overexpression of WNT16 surprisingly increases mainly trabecular bone mass. WNT16-targeted therapies might be useful for treatment of postmenopausal trabecular bone loss.


2014 ◽  
Vol 306 (12) ◽  
pp. E1406-E1417 ◽  
Author(s):  
Kanogwun Thongchote ◽  
Saovaros Svasti ◽  
Jarinthorn Teerapornpuntakit ◽  
Nateetip Krishnamra ◽  
Narattaphol Charoenphandhu

A marked decrease in β-globin production led to β-thalassemia, a hereditary anemic disease associated with bone marrow expansion, bone erosion, and osteoporosis. Herein, we aimed to investigate changes in bone mineral density (BMD) and trabecular microstructure in hemizygous β-globin knockout thalassemic (BKO) mice and to determine whether endurance running (60 min/day, 5 days/wk for 12 wk in running wheels) could effectively alleviate bone loss in BKO mice. Both male and female BKO mice (1–2 mo old) showed growth retardation as indicated by smaller body weight and femoral length than their wild-type littermates. A decrease in BMD was more severe in female than in male BKO mice. Bone histomorphometry revealed that BKO mice had decreases in trabecular bone volume, trabecular number, and trabecular thickness, presumably due to suppression of osteoblast-mediated bone formation and activation of osteoclast-mediated bone resorption, the latter of which was consistent with elevated serum levels of osteoclastogenic cytokines IL-1α and -1β. As determined by peripheral quantitative computed tomography, running increased cortical density and thickness in the femoral and tibial diaphyses of BKO mice compared with those of sedentary BKO mice. Several histomorphometric parameters suggested an enhancement of bone formation (e.g., increased mineral apposition rate) and suppression of bone resorption (e.g., decreased osteoclast surface), which led to increases in trabecular bone volume and trabecular thickness in running BKO mice. In conclusion, BKO mice exhibited pervasive osteopenia and impaired bone microstructure, whereas running exercise appeared to be an effective intervention in alleviating bone microstructural defect in β-thalassemia.


2010 ◽  
Vol 207 (3) ◽  
pp. 257-263 ◽  
Author(s):  
Kotaro Azuma ◽  
Stephanie C Casey ◽  
Masako Ito ◽  
Tomohiko Urano ◽  
Kuniko Horie ◽  
...  

The steroid and xenobiotic receptor (SXR) and its murine ortholog pregnane X receptor (PXR) are nuclear receptors that are expressed mainly in the liver and intestine where they function as xenobiotic sensors. In addition to its role as a xenobiotic sensor, previous studies in our laboratories and elsewhere have identified a role for SXR/PXR as a mediator of bone homeostasis. Here, we report that systemic deletion of PXR results in marked osteopenia with mechanical fragility in female mice as young as 4 months old. Bone mineral density (BMD) of PXR knockout (PXRKO) mice was significantly decreased compared with the BMD of wild-type (WT) mice. Micro-computed tomography analysis of femoral trabecular bones revealed that the three-dimensional bone volume fraction of PXRKO mice was markedly reduced compared with that of WT mice. Histomorphometrical analysis of the trabecular bones in the proximal tibia showed a remarkable reduction in bone mass in PXRKO mice. As for bone turnover of the trabecular bones, bone formation is reduced, whereas bone resorption is enhanced in PXRKO mice. Histomorphometrical analysis of femoral cortical bones revealed a larger cortical area in WT mice than that in PXRKO mice. WT mice had a thicker cortical width than PXRKO mice. Three-point bending test revealed that these morphological phenotypes actually caused mechanical fragility. Lastly, serum levels of phosphate, calcium, and alkaline phosphatase were unchanged in PXRKO mice compared with WT. Consistent with our previous results, we conclude that SXR/PXR promotes bone formation and suppresses bone resorption thus cementing a role for SXR/PXR as a key regulator of bone homeostasis.


2011 ◽  
Vol 212 (2) ◽  
pp. 179-186 ◽  
Author(s):  
Rana Samadfam ◽  
Malaika Awori ◽  
Agnes Bénardeau ◽  
Frieder Bauss ◽  
Elena Sebokova ◽  
...  

Peroxisome proliferator-activated receptor (PPAR) γ agonists, such as pioglitazone (Pio), improve glycemia and lipid profile but are associated with bone loss and fracture risk. Data regarding bone effects of PPARα agonists (including fenofibrate (Feno)) are limited, although animal studies suggest that Feno may increase bone mass. This study investigated the effects of a 13-week oral combination treatment with Pio (10 mg/kg per day)+Feno (25 mg/kg per day) on body composition and bone mass parameters compared with Pio or Feno alone in adult ovariectomized (OVX) rats, with a 4-week bone depletion period, followed by a 6-week treatment-free period. Treatment of OVX rats with Pio+Feno resulted in ∼50% lower fat mass gain compared with Pio treatment alone. Combination treatment with Pio+Feno partially prevented Pio-induced loss of bone mineral content (∼45%) and bone mineral density (BMD; ∼60%) at the lumbar spine. Similar effects of treatments were observed at the femur, most notably at sites rich in trabecular bone. At the proximal tibial metaphysis, concomitant treatment with Pio+Feno prevented Pio exacerbation of ovariectomy-induced loss of trabecular bone, resulting in BMD values in the Pio+Feno group comparable to OVX controls. Discontinuation of Pio or Feno treatment of OVX rats was associated with partial reversal of effects on bone loss or bone mass gain, respectively, while values in the Pio+Feno group remained comparable to OVX controls. These data suggest that concurrent/dual agonism of PPARγ and PPARα may reduce the negative effects of PPARγ agonism on bone mass.


Endocrinology ◽  
2003 ◽  
Vol 144 (5) ◽  
pp. 2132-2140 ◽  
Author(s):  
Keiichiro Kitahara ◽  
Muneaki Ishijima ◽  
Susan R. Rittling ◽  
Kunikazu Tsuji ◽  
Hisashi Kurosawa ◽  
...  

Intermittent PTH treatment increases cancellous bone mass in osteoporosis patients; however, it reveals diverse effects on cortical bone mass. Underlying molecular mechanisms for anabolic PTH actions are largely unknown. Because PTH regulates expression of osteopontin (OPN) in osteoblasts, OPN could be one of the targets of PTH in bone. Therefore, we examined the role of OPN in the PTH actions in bone. Intermittent PTH treatment neither altered whole long-bone bone mineral density nor changed cortical bone mass in wild-type 129 mice, although it enhanced cancellous bone volume as reported previously. In contrast, OPN deficiency induced PTH enhancement of whole-bone bone mineral density as well as cortical bone mass. Strikingly, although PTH suppressed periosteal bone formation rate (BFR) and mineral apposition rate (MAR) in cortical bone in wild type, OPN deficiency induced PTH activation of periosteal BFR and MAR. In cancellous bone, OPN deficiency further enhanced PTH increase in BFR and MAR. Analysis on the cellular bases for these phenomena indicated that OPN deficiency augmented PTH enhancement in the increase in mineralized nodule formation in vitro. OPN deficiency did not alter the levels of PTH enhancement of the excretion of deoxypyridinoline in urine, the osteoclast number in vivo, and tartrate-resistant acid phosphatase-positive cell development in vitro. These observations indicated that OPN deficiency specifically induces PTH activation of periosteal bone formation in the cortical bone envelope.


2015 ◽  
Vol 1 (1) ◽  
Author(s):  
Masayoshi Yamaguchi

<p>Bone homeostasis is maintained through a delicate balance between osteoblastic bone formation and osteoclastic bone resorption. Bone loss is caused by decreasing in osteoblastic bone formation and increase in osteoclastic bone resorption, thereby leading to osteoporosis. Functional food factors may play a role in<br />the prevention of osteoporosis. Functional food factors including genistein, menaquinone-7 (vitamin K2) and β-cryptoxanthine have been shown to possess a potential osteogenic effect. These factors have been shown to reveal stimulatory effects on osteoblastic bone formation and suppressive effects on osteoclastic<br />bone resorption. Dietary intake of these factors has been shown to reveal preventive effects on bone loss in animal models of osteoporosis and human subjects. This review will introduce our findings concerning roles of functional food factors in regulation of bone homeostasis and prevention of osteoporosis.</p>


1990 ◽  
Vol 259 (5) ◽  
pp. E715-E722
Author(s):  
D. D. Bikle ◽  
B. P. Halloran ◽  
C. McGalliard-Cone ◽  
E. Morey-Holton

Previous studies regarding the effects of 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] on bone have suggested that 1,25(OH)2D3 increases bone mass and calcium. Many of these studies have focused on trabecular or total bone without examining cortical bone per se. To determine whether the response of trabecular bone to 1,25(OH)2D3 differed from the response of cortical bone, we infused 1,25(OH)2D3 into rats and examined bone mass, 45Ca accumulation, and the density distribution of bone particles (as a measure of bone maturation) in both the proximal tibia and shaft. In the proximal tibia 1,25(OH)2D3 decreased 45Ca accumulation, yet increased bone mass and shifted the particle distribution to more mineralized fractions. In the shaft there was a redistribution of bone to less mineralized fractions that was not accompanied by a change in total bone mass or a decrease in 45Ca accumulation. Thus 1,25(OH)2D3 may retard bone maturation and mineralization throughout the tibia, but this effect in the proximal tibia appears to be overshadowed by a reduction in bone resorption resulting in an accumulation of well-mineralized bone in that region. Bone resorption, however, was not measured directly. The net result is an increase in bone mass and density of trabecular bone not seen in cortical bone.


Author(s):  
Abin Joy ◽  
Chaitra N ◽  
Ashok M ◽  
Handral M

ABSTRACTObjectives: This study was designed to investigate the antiosteoporotic activity of isolated anthraquinones from Morinda citrifolia fruit extract inovariectomy (OVX) induced osteoporotic rats.Methods: All the rats were divided into 4 groups (n=6 each). Group I (sham control) received vehicle, p.o., Group II OVX control (vehicle, p.o.),Group III was OVX+standard raloxifene (5.4 mg/kg, p.o.), and Group IV was OVX+Physcion (100 mg/kg, p.o.) for 90 days.Results: The daily oral administration of isolated compound physcion (100 mg/kg) for 12 weeks to the rats prevented OVX-induced osteoporosis.This was examined by serum biomarkers such as alkaline phosphatase, calcium, and tartrate resistant acid phosphatase and showed significanteffects (p<0.0001). The femur bone strength assessed by three-point bending test showed improved bone strength in physcion treated rats, andthis was supported by enhanced bone mineral density (p<0.05). The ash parameters of femur bone studied from physcion treated rats exhibited asignificant (p<0.0001) value of ash weight followed by ash calcium content. Further, femur bone histological examination revealed the protectiveeffect of the compound physcion (100 mg/kg) against OVX-induced bone loss in rats, where it showed mineralization of trabecular spaces, improvedbone compactness thereby intact bone architecture.Conclusion: This study concludes that the isolated anthraquinone physcion had a preventive effect against OVX-induced bone loss in rats.Keywords: Morinda citrifolia, Physcion, Osteoporosis, Bone mineral density, Ash mineral content.


2010 ◽  
Vol 299 (3) ◽  
pp. E426-E436 ◽  
Author(s):  
Panan Suntornsaratoon ◽  
Kannikar Wongdee ◽  
Suchandra Goswami ◽  
Nateetip Krishnamra ◽  
Narattaphol Charoenphandhu

The lactogenic hormone prolactin (PRL) directly regulates osteoblast functions in vitro and modulates bone remodeling in nulliparous rats, but its osteoregulatory roles in pregnant and lactating rats with physiological hyperprolactinemia remained unclear. Herein, bone changes were investigated in rats treated with bromocriptine (Bromo), an inhibitor of pituitary PRL release, or Bromo+PRL at different reproductive phases, from mid-pregnancy to late lactation. PRL receptors were strongly expressed in osteoblasts lining bone trabeculae, indicating bone as a target of PRL actions. By using dual energy X-ray absorptiometry, we found a significant increase in bone mineral density in the femora and vertebrae of pregnant rats. Such pregnancy-induced bone gain was, however, PRL independent and may have resulted from the increased cortical thickness. Bone trabeculae were modestly changed during pregnancy as evaluated by bone histomorphometry. On the other hand, lactating rats, especially in late lactation, showed massive bone loss in bone trabeculae but not in cortical shells. Further study in Bromo- and Bromo+PRL-treated rats suggested that PRL contributed to decreases in trabecular bone volume and number and increases in trabecular separation and eroded surface, as well as a paradoxical increase in bone formation rate in late lactation. Uncoupling of trabecular bone formation and resorption was evident in lactating rats, with the latter being predominant. In conclusion, pregnancy mainly induced cortical bone gain, whereas lactation led to trabecular bone loss in both long bones and vertebrae. Although PRL was not responsible for the pregnancy-induced bone gain, it was an important regulator of bone modeling during lactation.


2013 ◽  
Vol 98 (2) ◽  
pp. 571-580 ◽  
Author(s):  
Kim Brixen ◽  
Roland Chapurlat ◽  
Angela M. Cheung ◽  
Tony M. Keaveny ◽  
Thomas Fuerst ◽  
...  

Abstract Context: Odanacatib, a cathepsin K inhibitor, increases spine and hip areal bone mineral density (BMD) in postmenopausal women with low BMD and cortical thickness in ovariectomized monkeys. Objective: The objective of the study was to examine the impact of odanacatib on the trabecular and cortical bone compartments and estimated strength at the hip and spine. Design: This was a randomized, double-blind, 2-year trial. Setting: The study was conducted at a private or institutional practice. Participants: Participants included 214 postmenopausal women with low areal BMD. Intervention: The intervention included odanacatib 50 mg or placebo weekly. Main Outcome Measures: Changes in areal BMD by dual-energy x-ray absorptiometry (primary end point, 1 year areal BMD change at lumbar spine), bone turnover markers, volumetric BMD by quantitative computed tomography (QCT), and bone strength estimated by finite element analysis were measured. Results: Year 1 lumbar spine areal BMD percent change from baseline was 3.5% greater with odanacatib than placebo (P &lt; .001). Bone-resorption marker C-telopeptide of type 1 collagen was significantly lower with odanacatib vs placebo at 6 months and 2 years (P &lt; .001). Bone-formation marker procollagen I N-terminal peptide initially decreased with odanacatib but by 2 years did not differ from placebo. After 6 months, odanacatib-treated women had greater increases in trabecular volumetric BMD and estimated compressive strength at the spine and integral and trabecular volumetric BMD and estimated strength at the hip (P &lt; .001). At the cortical envelope of the femoral neck, bone mineral content, thickness, volume, and cross-sectional area also increased from baseline with odanacatib vs placebo (P &lt; .001 at 24 months). Adverse experiences were similar between groups. Conclusions: Over 2 years, odanacatib decreased bone resorption, maintained bone formation, increased areal and volumetric BMD, and increased estimated bone strength at both the hip and spine.


Sign in / Sign up

Export Citation Format

Share Document