Effects of transforming growth factor β on bone nodule formation and expression of bone morphogenetic protein 2, osteocalcin, osteopontin, alkaline phosphatase, and type I collagen mRNA in long-term cultures of fetal rat calvarial osteoblasts

2009 ◽  
Vol 9 (6) ◽  
pp. 855-863 ◽  
Author(s):  
S.E. Harris ◽  
L.F. Bonewald ◽  
M.A. Harris ◽  
M. Sabatini ◽  
S. Dallas ◽  
...  
2003 ◽  
Vol 82 (1) ◽  
pp. 23-27 ◽  
Author(s):  
M. Zhao ◽  
J.E. Berry ◽  
M.J. Somerman

As an approach for improving the outcome and predictability of periodontal regenerative therapies, we have focused on determining the responses of cells within the local environment to putative regenerative factors. This study examined the effects of bone morphogenetic protein-2 (BMP-2) on murine cementoblasts in vitro. Northern blot analysis indicated that BMP-2 decreased mRNA levels of bone sialoprotein and type I collagen dose-dependently (10–300 ng/mL). At low doses, up to 100 ng/mL, BMP-2 had no effect on transcripts for osteocalcin and osteopontin, whereas at 300 ng/mL, BMP-2 greatly increased expression of these two genes. BMP-2 also inhibited cementoblast-mediated mineral nodule formation in a dose-dependent manner (inhibition was noted at 10 ng/mL). Noggin reversed the effects of BMP-2 on gene expression and on mineralization. These findings reflect the diverse responses of periodontal cells to BMP-2 and highlight the need to consider the complexity of factors involved in designing predictable regenerative therapies.


2007 ◽  
Vol 38 (2) ◽  
pp. 315-330 ◽  
Author(s):  
Katharine B Lee ◽  
Vishal Khivansara ◽  
Michelle M Santos ◽  
Pankaj Lamba ◽  
Tony Yuen ◽  
...  

Transforming growth factor β superfamily ligands regulate pituitary FSH production and secretion. The best-described examples are the activins and inhibins, which respectively stimulate and hinder Fshb subunit transcription in gonadotrope cells. More recently, members of the bone morphogenetic protein (BMP) sub-family were shown to regulate FSH production in a manner analogous to the activins. Here, we used the murine gonadotrope cell line, LβT2, to investigate mechanisms through which BMP2 regulates the Fshb gene. Although expressed at low levels in LβT2 cells, Bmp2 mRNA was readily detected in adult murine pituitary gland. Recombinant BMP2 stimulated Fshb promoter-reporter activity, although its effects were weaker than those of equimolar activin A or B. BMP4 stimulated transcription comparably with BMP2, but BMPs 6 and 7 were about tenfold less potent. Remarkably, BMP2 and activin A synergistically upregulated Fshb transcription and endogenous Fshb mRNA levels in LβT2 cells. Although functionally cooperative, the two ligands appeared to use distinct intracellular mechanisms to mediate their responses because neither ligand altered the timing or magnitude of the other’s effects. Receptor overexpression analyses suggested that BMP2 may preferentially signal through complexes of the type II receptor, BMPR2, and the type I receptor, activin receptor like kinase (ALK2; Acvr1), to stimulate Fshb transcription. BMP2 rapidly activated the Smad1/5/8 intracellular signaling cascade and Smad8 overexpression potentiated BMP2’s effects. In summary, BMPs regulate Fshb transcription in LβT2 cells and can amplify the already robust effects of the activins through a distinct signaling mechanism. Because BMP2 is expressed in the adult mouse pituitary, it may act as critical paracrine co-regulator of FSH synthesis by gonadotropes.


2013 ◽  
Vol 115 (4) ◽  
pp. 539-545 ◽  
Author(s):  
Jonathan P. Gumucio ◽  
Michael D. Flood ◽  
Anthony C. Phan ◽  
Susan V. Brooks ◽  
Christopher L. Mendias

Transforming growth factor-β (TGF-β) is a proinflammatory cytokine that regulates the response of many tissues following injury. Previous studies in our lab have shown that treating muscles with TGF-β results in a dramatic accumulation of type I collagen, substantial fiber atrophy, and a marked decrease in force production. Because TGF-β promotes atrophy and fibrosis, our objective was to investigate whether the inhibition of TGF-β after injury would enhance the recovery of muscle following injury. We hypothesized that inhibiting TGF-β after contraction-induced injury would improve the functional recovery of muscles by preventing muscle fiber atrophy and weakness, and by limiting the accumulation of fibrotic scar tissue. To test this hypothesis, we induced an injury using a series of in situ lengthening contractions to extensor digitorum longus muscles of mice treated with either a bioneutralizing antibody against TGF-β or a sham antibody. Compared with controls, muscles from mice receiving TGF-β inhibitor showed a greater recovery in force 3 days and 7 days after injury but had a decrease in force compared with controls at the 21-day time point. The early enhancement in force in the TGF-β inhibitor group was associated with an initial improvement in tissue morphology, but, at 21 days, while the control group was fully recovered, the TGF-β inhibitor group displayed an irregular extracellular matrix and an increase in atrogin-1 gene expression. These results indicate that the inhibition of TGF-β promotes the early recovery of muscle function but is detrimental overall to full muscle recovery following moderate to severe muscle injuries.


Endocrinology ◽  
2009 ◽  
Vol 150 (2) ◽  
pp. 727-740 ◽  
Author(s):  
Yu-Lin Yang ◽  
Yi-Shiuan Liu ◽  
Lea-Yea Chuang ◽  
Jinn-Yuh Guh ◽  
Tao-Chen Lee ◽  
...  

TGF-β is a therapeutic target for renal fibrosis. Scientists have long sought ways to antagonize TGF-β to ameliorate diabetic nephropathy. Bone morphogenetic protein (BMP-2) is a member of the TGF-β superfamily and is highly regulated in the kidney. Thus, the role of BMP-2 was investigated in NRK-49F cells (rat fibroblasts). We showed that TGF-β1 induces an increase in fibronectin. Treatment with exogenous BMP-2 or pCMV-BMP-2 significantly reversed the TGF-β1-induced increase in fibronectin concomitant with a significant decrease in type I TGF-β receptors (TGF-β RI). Moreover, BMP-2 significantly shortened the half-life of TGF-β RI. These results are related to proteosomal activation because MG132, a proteasome inhibitor, abolished BMP-2-mediated degradation of TGF-β RI. This was confirmed because BMP-2 time course dependently enhanced the ubiquitination level of TGF-β RI. In addition, Smads would seem to be involved in the interaction of BMP-2 and TGF-β. We demonstrated that BMP-2 significantly reversed the TGF-β1-induced increase in pSmad2/3 and reversed the TGF-β1-induced decrease in inhibitory Smad7. Most importantly, Smad7 small interfering RNA abolished the BMP-2-induced decrease in TGF-β RI. We evaluated the clinical efficacy of BMP-2 using unilateral ureteral obstruction rats. BMP-2 was administered ip for 7 d. In the unilateral ureteral obstruction kidneys, interstitial fibrosis was prominent. However, treatment with BMP-2 dramatically reduced Masson’s trichrome staining (collagen) in the interstitial and tubular areas of the kidneys concomitantly with a reduction in TGF-β RI. These results suggest that BMP-2 acts as a novel fibrosis antagonizing cytokine partly by down-regulating TGF-β RI and Smads. Bone morphogenetic protein-2 can antagonize TGF-β-inducing cellular fibrosis by intervening post-receptors signaling, thus disclosing an application of therapeutical potential against fibrosis disorders.


2011 ◽  
Vol 22 (11) ◽  
pp. 1836-1844 ◽  
Author(s):  
Maria Fragiadaki ◽  
Tetsurou Ikeda ◽  
Abigail Witherden ◽  
Roger M Mason ◽  
David Abraham ◽  
...  

Transforming growth factor-β (TGF-β) is an inducer of type I collagen, and uncontrolled collagen production leads to tissue scarring and organ failure. Here we hypothesize that uncovering a molecular mechanism that enables us to switch off type I collagen may prove beneficial in treating fibrosis. For the first time, to our knowledge, we provide evidence that CUX1 acts as a negative regulator of TGF-β and potent inhibitor of type I collagen transcription. We show that CUX1, a CCAAT displacement protein, is associated with reduced expression of type I collagen both in vivo and in vitro. We show that enhancing the expression of CUX1 results in effective suppression of type I collagen. We demonstrate that the mechanism by which CUX1 suppresses type I collagen is through interfering with gene transcription. In addition, using an in vivo murine model of aristolochic acid (AA)-induced interstitial fibrosis and human AA nephropathy, we observe that CUX1 expression was significantly reduced in fibrotic tissue when compared to control samples. Moreover, silencing of CUX1 in fibroblasts from kidneys of patients with renal fibrosis resulted in increased type I collagen expression. Furthermore, the abnormal CUX1 expression was restored by addition of TGF-β via the p38 mitogen-activated protein kinase pathway. Collectively, our study demonstrates that modifications of CUX1 expression lead to aberrant expression of type I collagen, which may provide a molecular basis for fibrogenesis.


Cell ◽  
1988 ◽  
Vol 52 (3) ◽  
pp. 405-414 ◽  
Author(s):  
Pellegrino Rossi ◽  
Gerard Karsenty ◽  
Anita B. Roberts ◽  
Nanette S. Roche ◽  
Michael B. Sporn ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document