Gallium nitrate increases type I collagen and fibronectin mRNA and collagen protein levels in bone and fibroblast cells

1993 ◽  
Vol 52 (4) ◽  
pp. 396-403 ◽  
Author(s):  
Richard S. Bockman ◽  
Peter T. Guidon ◽  
Lydia C. Pan ◽  
Roberto Salvatori ◽  
Alan Kawaguchi
2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Xin Wang ◽  
Jianshi Tan ◽  
Junhao Sun ◽  
Pengzhong Fang ◽  
Jinlei Chen ◽  
...  

Background. Intervertebral disc degeneration is related to tissue fibrosis. ADAMTS can degrade the important components of the ECM during the process of intervertebral disc degeneration, ultimately resulting in the loss of intervertebral disc function. sIL-13Rα2-Fc can inhibit fibrosis and slow down the degeneration process, but the mechanism involved remains unclear. Objective. To determine the mechanism by which sIL-13Rα2-Fc inhibits ECM degradation and reduces intervertebral disc tissue fibrosis using a transcriptomics analysis. Methods. A rat model of caudal intervertebral disc degeneration was established, and Sirius red staining was used to observe the pathological changes in the caudal intervertebral disc. Transcriptome sequencing was employed to assess the gene expression profiles of the intervertebral disc tissues in the model group and the sIL-13Rα2-Fc-treated group. Differentially expressed genes were identified and analyzed using GO annotation and KEGG pathway analyses. Real-time fluorescence quantitative PCR was used to verify the expression levels of candidate genes. The levels of GAG and HA were quantitatively assessed by ELISA, and the levels of collagen I and collagen II were analyzed by western blotting. Results. Sirius red staining showed that in the model group, the annulus fibrosus was disordered, the number of breaks increased, and the type I collagen protein levels increased, whereas in the sIL-13Rα2-Fc group, the annulus fibrosus was ordered, the number of breaks decreased, and the type II collagen protein levels increased. In comparison with the model group, we identified 58 differentially expressed genes in the sIL-13Rα2-Fc group, and these were involved in 35 signaling pathways. Compared with those in the model group, the mRNA expression levels of Rnux1, Sod2, and Tnfaip6 in the IL-13Rα2-Fc group were upregulated, and the mRNA expression levels of Aldh3a1, Galnt3, Fgf1, Celsr1, and Adamts8 were downregulated; these results were verified by real-time fluorescence quantitative PCR. TIMP-1 (an ADAMTS inhibitor) and TIMP-1 combined with the sIL-13Rα2-Fc intervention increased the levels of GAG and HA, inhibited the expression of type I collagen, and promoted the expression of type II collagen. Conclusion. Adamts8 may participate in the degradation of ECM components such as GAG and HA and lead to an imbalance in the ECM of the intervertebral disc, resulting in intervertebral disc degeneration. sIL-13Rα2-Fc promoted anabolism of the ECM and increased the levels of ECM components by inhibiting the expression of Adamts8, thus maintaining the dynamic equilibrium of the ECM and ultimately delaying intervertebral disc degeneration.


Circulation ◽  
2015 ◽  
Vol 132 (suppl_3) ◽  
Author(s):  
Kevin Morine ◽  
Vikram Paruchuri ◽  
Xiaoying Qiao ◽  
Emily Mackey ◽  
Mark Aronovitz ◽  
...  

Introduction: Activin receptor like kinase 1 (ALK1) mediates signaling via transforming growth factor beta-1 (TGFb1), a pro-fibrogenic cytokine. No studies have defined a role for ALK1 in heart failure. We tested the hypothesis that reduced ALK1 expression promotes maladaptive cardiac remodeling in heart failure. Methods and Results: ALK1 mRNA expression was quantified by RT-PCR in left ventricular (LV) tissue from patients with end-stage heart failure and compared to control LV tissue obtained from the National Disease Research Interchange (n=8/group). Compared to controls, LV ALK1 mRNA levels were reduced by 85% in patients with heart failure. Next, using an siRNA approach, we tested whether reduced ALK1 levels promote TGFb1-mediated collagen production in human cardiac fibroblasts. Treatment with an ALK1 siRNA reduced ALK1 mRNA levels by 75%. Compared to control, TGFb1-mediated Type I collagen and pSmad-3 protein levels were 2.5-fold and 1.7-fold higher, respectively, after ALK1 depletion. To explore a role for ALK1 in heart failure, ALK1 haploinsufficient (ALK1) and wild-type mice (WT; n=8/group) were studied 2 weeks after thoracic aortic constriction (TAC). Compared to WT, baseline LV ALK1 mRNA levels were 50% lower in ALK1 mice. Both LV and lung weights were higher in ALK1 mice after TAC. Cardiomyocyte area and LV mRNA levels of BNP, RCAN, and b-MHC were increased similarly, while SERCa levels were reduced in both ALK1 and WT mice after TAC. Compared to WT, LV fibrosis (Figure) and Type 1 Collagen mRNA and protein levels were higher among ALK1 mice. Compared to WT, LV fractional shortening (48±12 vs 26±10%, p=0.01) and survival (Figure) were lower in ALK1 mice after TAC. Conclusions: Reduced LV expression of ALK1 is associated with advanced heart failure in humans and promotes early mortality, impaired LV function, and cardiac fibrosis in a murine model of heart failure. Further studies examining the role of ALK1 and ALK1 inhibitors on cardiac remodeling are required.


1999 ◽  
Vol 277 (5) ◽  
pp. G1074-G1080 ◽  
Author(s):  
Jorge A. Gutierrez ◽  
Hilary A. Perr

Intestinal muscle undergoes stretch intermittently during peristalsis and persistently proximal to obstruction. The influence of this pervasive biomechanical force on developing smooth muscle cell function remains unknown. We adapted a novel in vitro system to study whether stretch modulates transforming growth factor-β1 (TGF-β1) and type I collagen protein and component α1 chain [α1(I) collagen] expression in fetal human intestinal smooth muscle cells. Primary confluent cells at 20-wk gestation, cultured on flexible silicone membranes, were subjected to two brief stretches or to 18 h tonic stretch. Nonstretched cultures served as controls. TGF-β1 protein was measured by ELISA and type I collagen protein was assayed by Western blot. TGF-β1 and α1(I) collagen mRNA abundance was determined by Northern blot analysis, quantitated by phosphorimaging, and normalized to 18S rRNA. Transcription was examined by nuclear run-on assay. Tonic stretch increased TGF-β1 protein 40%, type I collagen protein 100%, TGF-β1 mRNA content 2.16-fold, and α1(I) collagen mRNA 3.80-fold and enhanced transcription of TGF-β1 and α1(I) collagen by 3.1- and 4.25-fold, respectively. Brief stretch stimulated a 50% increase in TGF-β1 mRNA content but no change in α1(I) collagen. Neutralizing anti-TGF-β1 ablated stretch-mediated effects on α1(I) collagen. Therefore, stretch upregulates transcription for TGF-β1, which stimulates α1(I) collagen gene expression in smooth muscle from developing gut.


2000 ◽  
Vol 13 (01) ◽  
pp. 23-27
Author(s):  
J. J. deHaan ◽  
J. N. Peck ◽  
Bonnie Campbell ◽  
Pamela Ginn ◽  
Lynette Phillips ◽  
...  

SummaryThree American Cream puppies from a litter of six were admitted for evaluation and treatment of lameness caused by multiple pathological fractures. Because of a poor prognosis, all three of the affected dogs were ultimately euthanatized. Based on the histopathological findings of the bones and a collagen analysis from cultured skin fibroblast cells which confirmed the presence of abnormal type I collagen, the presumptive diagnosis was osteogenesis imperfecta. In humans, more than 90% of the cases of osteogenesis imperfecta are caused by defects in type I collagen (11). Osteogenesis imperfecta has rarely been described in animals and none of the previous reports document the disease in more than one dog from a single litter.Three American Cream puppies from a litter of six developed multiple pathologic features without a history of trauma. A diagnosis of osteogenesis imperfecta was made based on histopathology and results of type I collagen analysis from cultured skin fibroblasts.


2014 ◽  
Vol 307 (8) ◽  
pp. L632-L642 ◽  
Author(s):  
Richard Seonghun Nho ◽  
Jintaek Im ◽  
Yen-Yi Ho ◽  
Polla Hergert

Idiopathic pulmonary fibrosis (IPF) is a lethal and progressive lung disease characterized by persistent (myo)fibroblasts and the relentless accumulation of collagen matrix. Unlike normal lung fibroblasts, IPF lung fibroblasts have suppressed forkhead box O3a (FoxO3a) activity, which allows them to expand in this diseased environment. microRNA-96 (miR-96) has recently been found to directly bind to the 3′-untranslated region of FoxO3a mRNA, which subsequently inhibits its function. We examined whether aberrantly low FoxO3a expression is in part due to increased miR-96 levels in IPF fibroblasts on polymerized collagen, thereby causing IPF fibroblasts to maintain their pathological properties. miR-96 expression was upregulated in IPF fibroblasts compared with control fibroblasts when cultured on collagen. In contrast, FoxO3a mRNA levels were reduced in most IPF fibroblasts. However, when miR-96 function was inhibited, FoxO3a mRNA and protein expression were increased, suppressing IPF fibroblast proliferation and promoting their cell death in a dose-dependent fashion. Likewise, FoxO3a and its target proteins p21, p27, and Bim expression was also increased in the presence of a miR-96 inhibitor in IPF fibroblasts. However, when control fibroblasts were treated with miR-96 mimic, FoxO3a, p27, p21, and Bim mRNA and protein levels were decreased. In situ hybridization analysis further revealed the presence of enhanced miR-96 expression in cells within the fibroblastic foci of IPF lung tissue. Our results suggest that when IPF fibroblasts interact with collagen-rich matrix, pathologically altered miR-96 expression inhibits FoxO3a function, causing IPF fibroblasts to maintain their pathological phenotype, which may contribute to the progression of IPF.


2007 ◽  
Vol 292 (5) ◽  
pp. F1471-F1478 ◽  
Author(s):  
Sung Il Kim ◽  
Joon Hyeok Kwak ◽  
Mareena Zachariah ◽  
Yanjuan He ◽  
Lin Wang ◽  
...  

We have previously demonstrated that transforming growth factor-β1 (TGF-β1) rapidly activates the mitogen-activated protein kinase kinase 3 (MKK3)-p38 MAPK signaling cascade, leading to the induction of type I collagen synthesis in mouse glomerular mesangial cells (Wang L, Ma R, Flavell RA, Choi ME. J Biol Chem 277: 47257–47262, 2002). In the present study, we investigated the functional role of upstream TGF-β-activated kinase 1 (TAK1) and TAK1-binding protein 1 (TAB1) in the TGF-β1 signaling cascade. Rapid activation of endogenous TAK1 activity by TGF-β1 was observed in mouse mesangial cells. Transient overexpression of TAK1 with TAB1 enhanced the activation of MKK3 and p38 MAPK with or without TGF-β1 stimulation, whereas a dominant-negative mutant of TAK1 (TAK1DN) suppressed TGF-β1-induced activation of MKK3 and p38 MAPK. Moreover, constitutive expression of TAK1DN reduced steady-state protein levels of MKK3 and p38 MAPK as well as MKK3 phosphorylation. Increased p38α MAPK activity by ectopic expression of either TAB1 or wild-type p38α MAPK resulted in enhanced TGF-β1-induced type I collagen expression. In contrast, constitutive expression of TAK1DN inhibited collagen induction. Taken together, our data indicate that TAK1 and TAB1 play a pivotal role as upstream signal transducers activating the MKK3-p38 MAPK signaling cascade that leads to the induction of type I collagen expression by TGF-β1. In addition, our findings also suggest that TAK1 has a novel function in regulation of the steady-state protein levels of MKK3 and p38 MAPK.


2013 ◽  
Vol 288 (23) ◽  
pp. 16738-16746 ◽  
Author(s):  
Vittorio Abbonante ◽  
Cristian Gruppi ◽  
Diana Rubel ◽  
Oliver Gross ◽  
Remigio Moratti ◽  
...  

Growing evidence demonstrates that extracellular matrices regulate many aspects of megakaryocyte (MK) development; however, among the different extracellular matrix receptors, integrin α2β1 and glycoprotein VI are the only collagen receptors studied in platelets and MKs. In this study, we demonstrate the expression of the novel collagen receptor discoidin domain receptor 1 (DDR1) by human MKs at both mRNA and protein levels and provide evidence of DDR1 involvement in the regulation of MK motility on type I collagen through a mechanism based on the activity of SHP1 phosphatase and spleen tyrosine kinase (Syk). Specifically, we demonstrated that inhibition of DDR1 binding to type I collagen, preserving the engagement of the other collagen receptors, glycoprotein VI, α2β1, and LAIR-1, determines a decrease in MK migration due to the reduction in SHP1 phosphatase activity and consequent increase in the phosphorylation level of its main substrate Syk. Consistently, inhibition of Syk activity restored MK migration on type I collagen. In conclusion, we report the expression and function of a novel collagen receptor on human MKs, and we point out that an increasing level of complexity is necessary to better understand MK-collagen interactions in the bone marrow environment.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Li Zhang ◽  
Xiaochen Li ◽  
Haosheng Zhang ◽  
Zhengquan Huang ◽  
Nongshan Zhang ◽  
...  

Increasing evidence has shown that NLRP3 inflammasome activation participates in chronic aseptic inflammation and is related to tissue fibrosis. Our last study also revealed the vital role of NLRP3 inflammasome, highly associated with tissue hypoxia, in the onset and development of knee osteoarthritis (KOA). In this study, we tried to find a possible benign intervention for that pathological process. Agnuside (AGN), a nontoxic, natural small molecule isolated from the extract of Vitex negundo L. (Verbenaceae), has been demonstrated to have antioxidation, anti-inflammatory, analgesia, and many other properties as an iridoid glycoside, although its specific target is still unclear. Therefore, we established MIA-induced KOA model rats and investigated the effects of AGN oral gavage on oxygen-containing state, NLRP3 inflammasome, synovitis, and fibrosis in KOA. Pimonidazole staining and HIF-1α immunohistochemical assay both showed that AGN at the oral dose of 6.25 mg/kg can effectively relieve local hypoxia in synovial tissue. Besides, we observed a decrease of HIF-1α, caspase-1, ASC, and NLRP3 after AGN intervention, both in the mRNA and protein levels. In addition, rats treated with the AGN showed less inflammatory reaction and fibrosis, not only in the expression of NLRP3, inflammasome downstream factors IL-1β and IL-18, and fibrosis markers TGF-β, TIMP1, and VEGF but also in the observation of HE staining, anatomical characteristics, Sirius Red staining, and type I collagen immunohistochemistry. Subsequently, we established LPS-induced models of fibroblast-like synoviocytes (FLSs) mimicking the inflammatory environment of KOA and activating NLRP3 inflammasome. FLSs treated with AGN (3 μM) resulted in a downregulation of HIF-1α and the components required for NLRP3 inflammasome activation. Meanwhile, the content of proinflammatory factors IL-1β and IL-18 in FLS supernatant was also reduced by AGN. In addition, both mRNA and protein levels of the fibrotic markers were significantly decreased after AGN management. To conclude, this study demonstrates that AGN alleviates synovitis and fibrosis in experimental KOA through the inhibition of HIF-1α accumulation and NLRP3 inflammasome activation. Additionally, not only does it reveal some novel targets for anti-inflammatory and antioxidant effects of AGN but also announces its potential value in treating KOA in humans.


2020 ◽  
Vol 21 (12) ◽  
pp. 4241
Author(s):  
Erman Popowski ◽  
Benjamin Kohl ◽  
Tobias Schneider ◽  
Joachim Jankowski ◽  
Gundula Schulze-Tanzil

Tendinopathy is a rare but serious complication of quinolone therapy. Risk factors associated with quinolone-induced tendon disorders include chronic kidney disease accompanied by the accumulation of uremic toxins. Hence, the present study explored the effects of the representative uremic toxins phenylacetic acid (PAA) and quinolinic acid (QA), both alone and in combination with ciprofloxacin (CPX), on human tenocytes in vitro. Tenocytes incubated with uremic toxins +/- CPX were investigated for metabolic activity, vitality, expression of the dominant extracellular tendon matrix (ECM) protein type I collagen, cell-matrix receptor β1-integrin, proinflammatory interleukin (IL)-1β, and the ECM-degrading enzyme matrix metalloproteinase (MMP)-1. CPX, when administered at high concentrations (100 mM), suppressed tenocyte metabolism after 8 h exposure and at therapeutic concentrations after 72 h exposure. PAA reduced tenocyte metabolism only after 72 h exposure to very high doses and when combined with CPX. QA, when administered alone, led to scarcely any cytotoxic effect. Combinations of CPX with PAA or QA did not cause greater cytotoxicity than incubation with CPX alone. Gene expression of the pro-inflammatory cytokine IL-1β was reduced by CPX but up-regulated by PAA and QA. Protein levels of type I collagen decreased in response to high CPX doses, whereas PAA and QA did not affect its synthesis significantly. MMP-1 mRNA levels were increased by CPX. This effect became more pronounced in the form of a synergism following exposure to a combination of CPX and PAA. CPX was more tenotoxic than the uremic toxins PAA and QA, which showed only distinct suppressive effects.


Sign in / Sign up

Export Citation Format

Share Document