PI3K inhibitors IC87114 inhibits the migration and invasion of thyroid cancer cell in vitro and in vivo

2018 ◽  
Vol 119 (5) ◽  
pp. 4097-4102 ◽  
Author(s):  
Yan Jiang ◽  
Shuai Hao ◽  
Wuguo Tian ◽  
Bo Gao ◽  
Xiaohua Zhang ◽  
...  
2018 ◽  
Vol 2018 ◽  
pp. 1-7 ◽  
Author(s):  
Zhiwei He ◽  
Fangfang Lv ◽  
Yueli Gan ◽  
Jing Gu ◽  
Ting Que

In this study, we explored the role and mechanisms of Cyclocarya paliurus polysaccharide on cell apoptosis in thyroid cancer (TC) cells. The apoptosis of thyroid cancer cells in vitro and tumor tissues in vivo induced by Cyclocarya paliurus polysaccharide was determined by MTT assay and flow cytometric assay. The downstream molecules including phosphop-protein kinase B (p-Akt), Akt, B-cell lymphoma 2 (Bcl-2), and Bcl-2-associated X protein (Bax) in tumor tissue were evaluated by western blotting. MTT and flow cytometry assay in vitro revealed Cyclocarya paliurus polysaccharide-induced apoptosis of thyroid cancer cell line in a manner of time-dependent and dose-dependent. In vivo assay showed 50 mg/kg and 100 mg/kg Cyclocarya paliurus polysaccharide significantly suppressed the proliferation of thyroid cancer in mice. Western blotting showed downregulation of p-Akt, Akt, and Bcl-2 and upregulation of Bax. These results suggest that Cyclocarya paliurus polysaccharide may enhance thyroid cancer cell apoptosis by suppressing the activation of p-Akt, Akt, and Bcl-2 and activating Bax, which provide a novel use of CPP as a thyroid cancer treatment.


2014 ◽  
Vol 21 (6) ◽  
pp. 865-877 ◽  
Author(s):  
Samantha K McCarty ◽  
Motoyasu Saji ◽  
Xiaoli Zhang ◽  
Christina M Knippler ◽  
Lawrence S Kirschner ◽  
...  

Increased p21-activated kinase (PAK) signaling and expression have been identified in the invasive fronts of aggressive papillary thyroid cancers (PTCs), including those withRET/PTC, BRAFV600E, and mutantRASexpression. Functionally, thyroid cancer cell motilityin vitrois dependent on group 1 PAKs, particularly PAK1. In this study, we hypothesize that BRAF, a central kinase in PTC tumorigenesis and invasion, regulates thyroid cancer cell motility in part through PAK activation. Using three well-characterized human thyroid cancer cell lines, we demonstrated in all cell lines thatBRAFknockdown reduced PAK phosphorylation of direct downstream targets. In contrast, inhibition of MEK activity either pharmacologically or with siRNA did not reduce PAK activity, indicating MEK is dispensable for PAK activity. Inhibition of cell migration through BRAF loss is rescued by overexpression of either constitutive active MEK1 or PAK1, demonstrating that both signaling pathways are involved in BRAF-regulated cell motility. To further characterize BRAF–PAK signaling, immunofluorescence and immunoprecipitation demonstrated that both exogenously overexpressed and endogenous PAK1 and BRAF co-localize and physically interact, and that this interaction was enhanced in mitosis. Finally, we demonstrated that acute induction of BRAFV600E expressionin vivoin murine thyroid glands results in increased PAK expression and activity confirming a positive signaling relationshipin vivo. In conclusion, we have identified a signaling pathway in thyroid cancer cells which BRAF activates and physically interacts with PAK and regulates cell motility.


2006 ◽  
Vol 12 (18) ◽  
pp. 5570-5577 ◽  
Author(s):  
Quang T. Luong ◽  
James O'Kelly ◽  
Glenn D. Braunstein ◽  
Jerome M. Hershman ◽  
H. Phillip Koeffler

Author(s):  
Jiongwei Pan ◽  
Gang Huang ◽  
Zhangyong Yin ◽  
Xiaoping Cai ◽  
Enhui Gong ◽  
...  

AbstractSignificantly high-expressed circFLNA has been found in various cancer cell lines, but not in lung cancer. Therefore, this study aimed to explore the role of circFLNA in the progression of lung cancer. The target gene of circFLNA was determined by bioinformatics and luciferase reporter assay. Viability, proliferation, migration, and invasion of the transfected cells were detected by CCK-8, colony formation, wound-healing, and transwell assays, respectively. A mouse subcutaneous xenotransplanted tumor model was established, and the expressions of circFLNA, miR-486-3p, XRCC1, CYP1A1, and related genes in the cancer cells and tissues were detected by RT-qPCR, Western blot, or immunohistochemistry. The current study found that miR-486-3p was low-expressed in lung cancer. MiR-486-3p, which has been found to target XRCC1 and CYP1A1, was regulated by circFLNA. CircFLNA was located in the cytoplasm and had a high expression in lung cancer cells. Cancer cell viability, proliferation, migration, and invasion were promoted by overexpressed circFLNA, XRCC1, and CYP1A1 but inhibited by miR-486-3p mimic and circFLNA knockdown. The weight of the xenotransplanted tumor was increased by circFLNA overexpression yet reduced by miR-486-3p mimic. Furthermore, miR-486-3p mimic reversed the effect of circFLNA overexpression on promoting lung cancer cells and tumors and regulating the expressions of miR-486-3p, XRCC1, CYP1A1, and metastasis/apoptosis/proliferation-related factors. However, overexpressed XRCC1 and CYP1A1 reversed the inhibitory effect of miR-486-3p mimic on cancer cells and tumors. In conclusion, circFLNA acted as a sponge of miR-486-3p to promote the proliferation, migration, and invasion of lung cancer cells in vitro and in vivo by regulating XRCC1 and CYP1A1.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Anupama Chaudhary ◽  
Rajkumar S. Kalra ◽  
Vidhi Malik ◽  
Shashank P. Katiyar ◽  
Durai Sundar ◽  
...  

AbstractWithaferin-A is a withanolide, predominantly present in Ashwagandha (Withania somnifera). It has been shown to possess anticancer activity in a variety of human cancer cells in vitro and in vivo. Molecular mechanism of such cytotoxicity has not yet been completely understood. Withaferin-A and Withanone were earlier shown to activate p53 tumor suppressor and oxidative stress pathways in cancer cells. 2,3-dihydro-3β-methoxy analogue of Withaferin-A (3βmWi-A) was shown to lack cytotoxicity and well tolerated at higher concentrations. It, on the other hand, protected normal cells against oxidative, chemical and UV stresses through induction of anti-stress and pro-survival signaling. We, in the present study, investigated the effect of Wi-A and 3βmWi-A on cell migration and metastasis signaling. Whereas Wi-A binds to vimentin and heterogeneous nuclear ribonucleoprotein K (hnRNP-K) with high efficacy and downregulates its effector proteins, MMPs and VEGF, involved in cancer cell metastasis, 3βmWi-A was ineffective. Consistently, Wi-A, and not 3βmWi-A, caused reduction in cytoskeleton proteins (Vimentin, N-Cadherin) and active protease (u-PA) that are essential for three key steps of cancer cell metastasis (EMT, increase in cell migration and invasion).


Thyroid ◽  
2013 ◽  
Vol 23 (3) ◽  
pp. 317-328 ◽  
Author(s):  
Geneviève Dom ◽  
Vanessa Chico Galdo ◽  
Maxime Tarabichi ◽  
Gil Tomás ◽  
Aline Hébrant ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document