scholarly journals Matrine induces papillary thyroid cancer cell apoptosis in vitro and suppresses tumor growth in vivo by downregulating miR-182-5p

2020 ◽  
Vol 128 ◽  
pp. 110327 ◽  
Author(s):  
Songbo Fu ◽  
Nan Zhao ◽  
Gaojing Jing ◽  
Xiaomei Yang ◽  
Jingfang Liu ◽  
...  
2018 ◽  
Vol 2018 ◽  
pp. 1-7 ◽  
Author(s):  
Zhiwei He ◽  
Fangfang Lv ◽  
Yueli Gan ◽  
Jing Gu ◽  
Ting Que

In this study, we explored the role and mechanisms of Cyclocarya paliurus polysaccharide on cell apoptosis in thyroid cancer (TC) cells. The apoptosis of thyroid cancer cells in vitro and tumor tissues in vivo induced by Cyclocarya paliurus polysaccharide was determined by MTT assay and flow cytometric assay. The downstream molecules including phosphop-protein kinase B (p-Akt), Akt, B-cell lymphoma 2 (Bcl-2), and Bcl-2-associated X protein (Bax) in tumor tissue were evaluated by western blotting. MTT and flow cytometry assay in vitro revealed Cyclocarya paliurus polysaccharide-induced apoptosis of thyroid cancer cell line in a manner of time-dependent and dose-dependent. In vivo assay showed 50 mg/kg and 100 mg/kg Cyclocarya paliurus polysaccharide significantly suppressed the proliferation of thyroid cancer in mice. Western blotting showed downregulation of p-Akt, Akt, and Bcl-2 and upregulation of Bax. These results suggest that Cyclocarya paliurus polysaccharide may enhance thyroid cancer cell apoptosis by suppressing the activation of p-Akt, Akt, and Bcl-2 and activating Bax, which provide a novel use of CPP as a thyroid cancer treatment.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Zhongqin Gong ◽  
Lingbin Xue ◽  
Minghui Wei ◽  
Zhimin Liu ◽  
Alexander C. Vlantis ◽  
...  

Papillary thyroid cancer can dedifferentiate into a much more aggressive form of thyroid cancer, namely into anaplastic thyroid cancer. Nrf2 is commonly activated in papillary thyroid cancer, whereas its role in anaplastic thyroid cancer has not been fully explored. In this study, we used two cell lines and an animal model to examine the function of Nrf2 in anaplastic thyroid cancer. The role of Nrf2 in anaplastic thyroid cancer was investigated by a series of functional studies in two anaplastic thyroid cancer cell lines, FRO and KAT-18, and further confirmed with an in vivo study. The impact of Nrf2 on the sensitivity of anaplastic thyroid cancer cells to lenvatinib was also investigated to evaluate its potential clinical implication. We found that the expression of Nrf2 was significantly higher in anaplastic thyroid cancer cell line cells than in papillary thyroid cancer cells or normal control cells. Knockdown of Nrf2 in anaplastic thyroid cancer cells inhibited their viability and clonogenicity, reduced their migration and invasion ability in vitro, and suppressed their tumorigenicity in vivo. Mechanistically, knockdown of Nrf2 decreased the expression of Notch1. Lastly, knockdown of Nrf2 increased the sensitivity of anaplastic thyroid cancer cells to lenvatinib. As knockdown of Nrf2 reduced the metastatic and invasive ability of anaplastic thyroid cancer cells by inhibiting the Notch 1 signaling pathway and increased the cancer cell sensitivity to lenvatinib, Nrf2 could be a promising therapeutic target for patients with anaplastic thyroid cancer.


2021 ◽  
Vol 12 (6) ◽  
Author(s):  
Xiaoping Zhang ◽  
Dan Li ◽  
Chengyou Jia ◽  
Haidong Cai ◽  
Zhongwei Lv ◽  
...  

Abstract Background Papillary thyroid cancer (PTC) is the most common type of cancer of the endocrine system. Long noncoding RNAs (lncRNAs) are emerging as a novel class of gene expression regulators associated with tumorigenesis. Through preexisting databases available for differentially expressed lncRNAs in PTC, we uncovered that lncRNA OIP5-AS1 was significantly upregulated in PTC tissues. However, the function and the underlying mechanism of OIP5-AS1 in PTC are poorly understood. Methods Expression of lncRNA OIP5-AS1 and miR-98 in PTC tissue and cells were measured by quantitative real-time PCR (qRT-PCR). And expression of METTL14 and ADAMTS8 in PTC tissue and cells were measured by qRT-PCR and western blot. The biological functions of METTL14, OIP5-AS1, and ADAMTS8 were examined using MTT, colony formation, transwell, and wound healing assays in PTC cells. The relationship between METTL14 and OIP5-AS1 were evaluated using RNA immunoprecipitation (RIP) and RNA pull down assay. And the relationship between miR-98 and ADAMTS8 were examined by luciferase reporter assay. For in vivo experiments, a xenograft model was used to investigate the effects of OIP5-AS1 and ADAMTS8 in PTC. Results Functional validation revealed that OIP5-AS1 overexpression promotes PTC cell proliferation, migration/invasion in vitro and in vivo, while OIP5-AS1 knockdown shows an opposite effect. Mechanistically, OIP5-AS1 acts as a target of miR-98, which activates ADAMTS8. OIP5-AS1 promotes PTC cell progression through miR-98/ADAMTS8 and EGFR, MEK/ERK pathways. Furthermore, RIP and RNA pull down assays identified OIP5-AS1 as the downstream target of METTL14. Overexpression of METTL14 suppresses PTC cell proliferation and migration/invasion through inhibiting OIP5-AS1 expression and regulating EGFR, MEK/ERK pathways. Conclusions Collectively, our findings demonstrate that OIP5-AS1 is a METTL14-regulated lncRNA that plays an important role in PTC progression and offers new insights into the regulatory mechanisms underlying PTC development.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Yu Wang ◽  
Liming Zhu ◽  
Mei Guo ◽  
Gang Sun ◽  
Kun Zhou ◽  
...  

AbstractWHSC1 is a histone methyltransferase that facilitates histone H3 lysine 36 dimethylation (H3K36me2), which is a permissive mark associated with active transcription. In this study, we revealed how WHSC1 regulates tumorigenesis and chemosensitivity of colorectal cancer (CRC). Our data showed that WHSC1 as well as H3K36me2 were highly expressed in clinical CRC samples, and high WHSC1 expression is associated with poorer prognosis in CRC patients. WHSC1 reduction promoted colon cancer cell apoptosis both in vivo and in vitro. We found that B cell lymphoma-2 (BCL2) expression, an anti-apoptotic protein, is markedly decreased in after WHSC1 depletion. Mechanistic characterization indicated that WHSC1 directly binds to the promoter region of BCL2 gene and regulate its H3K36 dimethylation level. What’s more, our study indicated that WHSC1 depletion promotes chemosensitivity in CRC cells. Together, our results suggested that WHSC1 and H3K36me2 modification might be optimal therapeutic targets to disrupt CRC progression and WHSC1-targeted therapy might potentially overcome the resistance of chemotherapeutic agents.


Sign in / Sign up

Export Citation Format

Share Document