Temperature‐dependent structural fluctuation and its effect on the electronic structure and charge transport in hybrid perovskite CH 3 NH 3 PbI 3

Author(s):  
Jinyang Xi ◽  
Liangliang Zheng ◽  
Shenghao Wang ◽  
Jiong Yang ◽  
Wenqing Zhang
Author(s):  
H. A. Martinez-Rodriguez ◽  
J. F. Jurado ◽  
G. Herrera-Pérez ◽  
F. Espinoza-Magana ◽  
A. Reyes-Rojas

2021 ◽  
Vol 103 (4) ◽  
Author(s):  
T.-S. Nam ◽  
Junwon Kim ◽  
Chang-Jong Kang ◽  
Kyoo Kim ◽  
B. I. Min

2020 ◽  
Vol 6 (9) ◽  
pp. eaay4213 ◽  
Author(s):  
Yang Hu ◽  
Fred Florio ◽  
Zhizhong Chen ◽  
W. Adam Phelan ◽  
Maxime A. Siegler ◽  
...  

Spin and valley degrees of freedom in materials without inversion symmetry promise previously unknown device functionalities, such as spin-valleytronics. Control of material symmetry with electric fields (ferroelectricity), while breaking additional symmetries, including mirror symmetry, could yield phenomena where chirality, spin, valley, and crystal potential are strongly coupled. Here we report the synthesis of a halide perovskite semiconductor that is simultaneously photoferroelectricity switchable and chiral. Spectroscopic and structural analysis, and first-principles calculations, determine the material to be a previously unknown low-dimensional hybrid perovskite (R)-(−)-1-cyclohexylethylammonium/(S)-(+)-1 cyclohexylethylammonium) PbI3. Optical and electrical measurements characterize its semiconducting, ferroelectric, switchable pyroelectricity and switchable photoferroelectric properties. Temperature dependent structural, dielectric and transport measurements reveal a ferroelectric-paraelectric phase transition. Circular dichroism spectroscopy confirms its chirality. The development of a material with such a combination of these properties will facilitate the exploration of phenomena such as electric field and chiral enantiomer–dependent Rashba-Dresselhaus splitting and circular photogalvanic effects.


CrystEngComm ◽  
2014 ◽  
Vol 16 (33) ◽  
pp. 7621-7625 ◽  
Author(s):  
Cody J. Gleason ◽  
Jordan M. Cox ◽  
Ian M. Walton ◽  
Jason B. Benedict

Single crystal structures, luminescent properties and electronic structure calculations of three polymorphs of the opto-electronic charge transport material 4,4′-bis(9-carbazolyl)biphenyl.


2021 ◽  
Author(s):  
Swagatalaxmi Pujaru ◽  
Priyabrata Sadhukhan ◽  
Basudev Ghosh ◽  
Arup Dhara ◽  
Sachindranath Das

Abstract Lead free hybrid halide perovskite (CH3NH3)3Bi2Br9 has been successfully synthesized by mechano-chemical method. The microstructure analysis by Rietveld’s refinement method revealed that the crystal belongs to trigonal system with space group P3 ̅m1. The obtained microstructural parameters are well in agreement with the previously published data. Temperature-dependent ac conductivity, impedance spectroscopy, and complex dielectric properties have been investigated in detail. The negative temperature coefficient of resistance behaviour reveals the semiconducting nature of the materials. The complex impedance spectroscopy also supports the semiconducting nature of the sample with activation energy for conduction ~0.38 eV.


2012 ◽  
Vol 1 (1) ◽  
pp. Q4-Q7 ◽  
Author(s):  
Z. Liu ◽  
T. P. Chen ◽  
Y. Liu ◽  
M. Yang ◽  
J. I. Wong ◽  
...  

Author(s):  
Lekina Yulia ◽  
Sai Dintakurti ◽  
Benny Febriansyah ◽  
David George Bradley ◽  
Jiaxu Yan ◽  
...  

Two-dimensional (2D) phenylethyl ammonium (PEA+)-methyl ammonium (MA+) lead iodide ((PEA)2(MA)[Pb2I7]) hybrid perovskite exists as temperature-dependent dimorphs exhibiting an ill-defined phase transition occurring over 150 - 200 K range. Raman scattering,...


Sign in / Sign up

Export Citation Format

Share Document