Angiotensin II/angiotensin II type I receptor (AT1R) signaling promotes MCF-7 breast cancer cells survival via PI3-kinase/Akt pathway

2010 ◽  
Vol 225 (1) ◽  
pp. 168-173 ◽  
Author(s):  
Yanbin Zhao ◽  
Xuesong Chen ◽  
Li Cai ◽  
Yanmei Yang ◽  
Guangjie Sui ◽  
...  
2020 ◽  
Author(s):  
Mengyu Wei ◽  
Jun Hao ◽  
Xiaomei Liao ◽  
Yinfeng Liu ◽  
Ruihuan Fu ◽  
...  

Abstract Background Mitofusin 2 (MFN2) is localized on the outer membrane of mitochondria and is closely related to the migration of malignant tumor cells. Estrogen receptor β (ERβ) plays an anticancer role in breast cancer. Our previous experiments showed that ERβ can induce MFN2 expression, which then inhibits breast cancer cell migration. However, the exact mechanism by which ERβ-induced MFN2 inhibits breast cancer cell migration is unknown. Methods In this study, immunohistochemistry was first used to detect the expression of MFN2 in breast cancer tissues, and its relationship with the clinicopathological characteristics and prognosis of breast cancer patients was analyzed. MCF-7 and MDA-MB-231 cells were transfected with ERβ and MFN2 knockdown or expression plasmids. Western blot was used to detect the effects of ERβ on MFN2 and MFN2 on P-AKT473 and MMP2; the P-AKT pathway inhibitor LY294002 was administered to cells transfected with MFN2 knockdown plasmids, Western blot, immunocytofluorescence, and a wound healing assay revealed the effect of MFN2 on its downstream signaling pathway and the migration of breast cancer cells. Results This study found that the expression of MFN2 is related to the molecular type and prognosis of breast cancer patients ( P <0.05). The positive expression rate of MFN2 in triple-negative breast cancer was significantly lower than that in the HER2 + and luminal types. However, MFN2 expression was unrelated to age, tumor size, lymph node metastasis, TNM stage, histological type and grade ( P >0.05); ERβ positively regulated MFN2 expression and reduced the migration of both MCF-7 and MDA-MB-231 cells, while MFN2 knockdown increased the expression of P-AKT473 and MMP2. In contrast, the overexpression of MFN2 inhibited the expression of P-AKT473 and MMP2. These results showed that in MFN2 knockdown cells treated with LY294002, P-AKT473 and MMP2 expression levels were reversed. The reversal of P-AKT473 and MMP2 expression levels inhibits the invasiveness of human breast cancer cells. Conclusion MFN2 is related to the molecular subtype and prognosis of breast cancer. In human breast cancer MCF-7 and MDA-MB-231 cells, ERβ-induced MFN2 can inhibit the P-AKT pathway, which inhibits the invasiveness and migration of both breast cancer cell lines.


2004 ◽  
Vol 15 (10) ◽  
pp. 1510-1516 ◽  
Author(s):  
L.A. deGraffenried ◽  
L. Fulcher ◽  
W.E. Friedrichs ◽  
V. Grünwald ◽  
R.B. Ray ◽  
...  

2007 ◽  
Vol 14 (2) ◽  
pp. 293-303 ◽  
Author(s):  
Hoo Kyun Choi ◽  
Jin Won Yang ◽  
Sang Hee Roh ◽  
Chang Yeob Han ◽  
Keon Wook Kang

Acquired resistance to tamoxifen (TAM) is a serious therapeutic problem in breast cancer patients. The transition from chemotherapy-responsive breast cancer cells to chemotherapy-resistant cancer cells is mainly accompanied by the increased expression of multidrug resistance-associated proteins (MRPs). In this study, it was found that TAM-resistant MCF-7 (TAMR-MCF-7) cells expressed higher levels of MRP2 than control MCF-7 cells. Molecular analyses using MRP2 gene promoters supported the involvement of the pregnane X receptor (PXR) in MRP2 overexpression in TAMR-MCF-7 cells. Although CCAAT/enhancer-binding protein β was overexpressed continuously in TAMR-MCF-7 cells, this might not be responsible for the transcriptional activation of the MRP2 gene. In addition, the basal activities of phosphatidylinositol 3-kinase (PI3-kinase) were higher in the TAMR-MCF-7 cells than in the control cells. The inhibition of PI3-kinase significantly reduced both the PXR activity and MRP2 expression in TAMR-MCF-7 cells. Overall, MRP2 induction plays a role in the additional acquisition of chemotherapy resistance in TAM-resistant breast cancer.


1991 ◽  
Vol 129 (2) ◽  
pp. R5-R8 ◽  
Author(s):  
Anita Singh ◽  
M.J. Reed

ABSTRACT Oestradiol-17β hydroxysteroid dehydrogenase (E2DH) is present in normal and malignant breast tissues and also in cultured breast cancer cells. It can act in a reductive direction to convert oestrone to the biologically active oestrogen, oestradiol, or in an oxidative direction to metabolize oestradiol to oestrone and may therefore have a crucial role in regulating breast tissue concentrations of oestradiol. Insulin-like growth factor-type I (IGF-I) and IGF-II are both mitogens for breast cancer cells. In this study we have examined the effect of these growth factors on the reductive and oxidative activities of E2DH in MCF-7 (receptor positive) and MDA-MB-231 (receptor negative) breast cancer cells. Both IGF-I (80 ng/ml) and IGF-II (80 ng/ml) significantly stimulated E2DH reductive activity (up to 138%) in MCF-7 cells but had no effect on oxidative activity. Addition of IGF-II (100 ng/ml) to MDA-MB-231 cells resulted in a small but statistically significant (p<0.05) increase in E2DH reductive activity (18%) but in these cells reductive activity is 25-70 times lower than oxidative activity. If IGF-I and IGF-II act to stimulate E2DH reductive activity in breast tumours then such a mechanism could account for the increased concentrations of oestradiol detected in breast tumours.


PLoS ONE ◽  
2021 ◽  
Vol 16 (3) ◽  
pp. e0248175
Author(s):  
Victoria Granqvist ◽  
Christian Holmgren ◽  
Christer Larsson

Breast cancer prognosis is frequently good but a substantial number of patients suffer from relapse. The death receptor ligand TRAIL can in combination with Smac mimetics induce apoptosis in some luminal-like ER-positive breast cancer cell lines, such as CAMA-1, but not in MCF-7 cells. Here we show that TRAIL and the Smac mimetic LCL161 induce non-canonical NF-κB and IFN signaling in ER-positive MCF-7 cells and in CAMA-1 breast cancer cells when apoptosis is blocked by caspase inhibition. Levels of p52 are increased and STAT1 gets phosphorylated. STAT1 phosphorylation is induced by TRAIL alone in MCF-7 cells and is independent of non-canonical NF-κB since downregulation of NIK has no effect. The phosphorylation of STAT1 is a rather late event, appearing after 24 hours of TRAIL stimulation. It is preceded by an increase in IFNB1 mRNA levels and can be blocked by siRNA targeting the type I IFN receptor IFNAR1 and by inhibition of Janus kinases by Ruxolitinib. Moreover, downregulation of caspase-8, but not inhibition of caspase activity, blocks TRAIL-mediated STAT1 phosphorylation and induction of IFN-related genes. The data suggest that TRAIL-induced IFNB1 expression in MCF-7 cells is dependent on a non-apoptotic role of caspase-8 and leads to autocrine interferon-β signaling.


2000 ◽  
Vol 26 (1) ◽  
pp. 25-29 ◽  
Author(s):  
MG Berry ◽  
AW Goode ◽  
JR Puddefoot ◽  
GP Vinson ◽  
R Carpenter

2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Qisheng Xiong ◽  
Meng Wang ◽  
Jinglong Liu ◽  
Chia-Ying Lin

It has been deemed that the premetastatic niche (PMN) plays a critical role in facilitating bone metastasis of breast cancer cells. Tissue engineering scaffolds provide an advantageous environment to promote osteogenesis that may mimic the bony premetastatic niches (BPMNs). In this study, human mesenchymal stem cells (hMSCs) were seeded onto designed polycaprolactone/nanohydroxyapatite (PCL-nHA) scaffolds for osteogenic differentiation. Subsequently, a coculture system was used to establish the tissue-engineered BPMNs by culturing breast cancer cells, hMSCs, and osteoid-formed PCL-nHA scaffolds. Afterwards, a migration assay was used to investigate the recruitment of MDA-MB-231, MCF-7, and MDA-MB-453 cells to the BPMNs’ supernatants. The cancer stem cell (CSC) properties of these migrated cells were investigated by flow cytometry. Our results showed that the mRNA expression levels of alkaline phosphatase (ALP), Osterix, runt-related transcription factor 2 (Runx2), and collagen type I alpha 1 (COL1A1) on the PCL-nHA scaffolds were dramatically increased compared to the PCL scaffolds on days 11, 18, and 32. The expression of CXCL12 in these BPMNs was increased gradually over coculturing time, and it may be a feasible marker for BPMNs. Furthermore, migration analysis results showed that the higher maturation of BPMNs collectively contributed to the creation of a more favorable niched site for the cancerous invasion. The subpopulation of breast cancer stem cells (BCSCs) was more likely to migrate to fertile BPMNs. The proportion of BCSCs in metastatic MDA-MB-231, MCF-7, and MDA-MB-453 cells were increased by approximately 63.47%, 149.48%, and 127.60%. The current study demonstrated that a designed tissue engineering scaffold can provide a novel method to create a bone-mimicking environment that serves as a useable platform to recapitulate the BPMNs and help interrogate the scheme of bone metastasis by breast cancer.


Sign in / Sign up

Export Citation Format

Share Document