Toll like receptor signaling pathway as a potential therapeutic target in colorectal cancer

2018 ◽  
Vol 233 (8) ◽  
pp. 5613-5622 ◽  
Author(s):  
Reyhaneh Moradi-Marjaneh ◽  
Seyed Mahdi Hassanian ◽  
Hamid Fiuji ◽  
Saman Soleimanpour ◽  
Gordon A. Ferns ◽  
...  
2018 ◽  
Vol 233 (10) ◽  
pp. 6538-6549 ◽  
Author(s):  
Reyhaneh Moradi Marjaneh ◽  
Seyed Mahdi Hassanian ◽  
Niloofar Ghobadi ◽  
Gordon A. Ferns ◽  
Afshin Karimi ◽  
...  

QJM ◽  
2021 ◽  
Vol 114 (Supplement_1) ◽  
Author(s):  
Rowaida Mohammed Reda M. M Aboushahba ◽  
Fayda Ibrahim Abdel Motaleb ◽  
Ahmed Abdel Aziz Abou-Zeid ◽  
Enas Samir Nabil ◽  
Dalia Abdel-Wahab Mohamed ◽  
...  

ABSTRACT Colorectal cancer (CRC) is one of the leading causes of cancer-related deaths world-wide. There is an increasing need for the identification of novel biomarkers/targets for early diagnosis and for the development of novel chemopreventive and therapeutic agents for CRC. Recently, MACF1 gene has emerged as a potential therapeutic target in cancer as it involved in processes critical for tumor cell proliferation, invasion and metastasis. It is suggested that MACF1 may function in cancers through Wnt signaling. MiR-34a is a well-known tumor suppressor miRNA.miR-34a targets MACF1 gene as a part of the wnt signaling pathway. In this study, 40 colonic tissues were collected from CRC patients (20) and control subjects (20). miR-34a-5p was assessed by real time PCR in all study groups. The results showed highly significant decrease (P < 0.01) in miR-34a relative expression in the CRC group (median RQ 0.13) when compared to the benign group (median RQ 5.3) and the healthy control group (median RQ 19.63). miR-34a mimic and inhibitor were transfected in CaCo-2 cell line and proliferation was assessed. The transfection of the cell line with miR-34a mimic decreased cell proliferation. Our study suggests that miR-34a-5p targets MACF1 gene as a part of the wnt signaling pathway leading to the involvement in the molecular mechanisms of CRC development and progression.


Viruses ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 2054
Author(s):  
Monika Olech ◽  
Katarzyna Ropka-Molik ◽  
Tomasz Szmatoła ◽  
Katarzyna Piórkowska ◽  
Jacek Kuźmak

Small ruminant lentiviruses (SRLV) are economically important viral pathogens of sheep and goats. SRLV infection may interfere in the innate and adaptive immunity of the host, and genes associated with resistance or susceptibility to infection with SRLV have not been fully recognized. The presence of animals with relatively high and low proviral load suggests that some host factors are involved in the control of virus replication. To better understand the role of the genes involved in the host response to SRLV infection, RNA sequencing (RNA-seq) method was used to compare whole gene expression profiles in goats carrying both a high (HPL) and low (LPL) proviral load of SRLV and uninfected animals. Data enabled the identification of 1130 significant differentially expressed genes (DEGs) between control and LPL groups: 411 between control and HPL groups and 1434 DEGs between HPL and LPL groups. DEGs detected between the control group and groups with a proviral load were found to be significantly enriched in several gene ontology (GO) terms, including an integral component of membrane, extracellular region, response to growth factor, inflammatory and innate immune response, transmembrane signaling receptor activity, myeloid differentiation primary response gene 88 (MyD88)-dependent toll-like receptor signaling pathway as well as regulation of cytokine secretion. Our results also demonstrated significant deregulation of selected pathways in response to viral infection. The presence of SRLV proviral load in blood resulted in the modification of gene expression belonging to the toll-like receptor signaling pathway, the tumor necrosis factor (TNF) signaling pathway, the cytokine-cytokine receptor interaction, the phagosome, the Ras signaling pathway, the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) (PI3K-Akt) signaling pathway and rheumatoid arthritis. It is worth mentioning that the most predominant in all pathways were genes represented by toll-like receptors, tubulins, growth factors as well as interferon gamma receptors. DEGs detected between LPL and HPL groups were found to have significantly enriched regulation of signaling receptor activity, the response to toxic substances, nicotinamide adenine dinucleotide (NADH) dehydrogenase complex assembly, cytokine production, vesicle, and vacuole organization. In turn, the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway tool classified DEGs that enrich molecular processes such as B and T-cell receptor signaling pathways, natural killer cell-mediated cytotoxicity, Fc gamma R-mediated phagocytosis, toll-like receptor signaling pathways, TNF, mammalian target of rapamycin (mTOR) signaling and forkhead box O (Foxo) signaling pathways, etc. Our data indicate that changes in SRLV proviral load induced altered expression of genes related to different biological processes such as immune response, inflammation, cell locomotion, and cytokine production. These findings provide significant insights into defense mechanisms against SRLV infection. Furthermore, these data can be useful to develop strategies against SRLV infection by selection of animals with reduced SRLV proviral concentration that may lead to a reduction in the spread of the virus.


2009 ◽  
Vol 11 (3) ◽  
pp. 321-327 ◽  
Author(s):  
Jie Wang ◽  
Yu Hu ◽  
Wei Wen Deng ◽  
Bing Sun

2019 ◽  
Vol 41 (12) ◽  
pp. 1417-1430
Author(s):  
Ran Tian ◽  
Inge Seim ◽  
Zepeng Zhang ◽  
Ying Yang ◽  
Wenhua Ren ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document